The Grb10-Interacting GYF Protein-2 (GIGYF2) gene has been proposed as the Parkinson-disease (PD) gene underlying the PARK11 locus. However, association of GIGYF2 with PD has been challenged and a functional validation of GIGYF2 mutations is lacking. In this frame, we performed a mutational screening of GIGYF2 in an Italian PD cohort. Exons containing known mutations were analyzed in 552 cases and 552 controls. Thereafter, a subset of 184 familial PD cases and controls were subjected to a full coding-exon screening. These analyses identified 8 missense variations in 9 individuals (4 cases, 5 controls). Furthermore, we developed a zebrafish model of gigyf2 deficiency. Abrogation of gigyf2 function in zebrafish embryos did not lead to a drastic cell loss in diencephalic dopaminergic (DA) neuron clusters, suggesting that gigyf2 is not required for DA neuron differentiation. Notably, gigyf2 functional abrogation did not increase diencephalic DA neurons susceptibility to the PD-inducing drug MPP+. These data, together with those recently reported by other groups, suggest that GIGYF2 is unlikely to be the PARK11 gene.

Mutational screening and functional analyses in the zebrafish model of GIGYF2 as a candidate gene for Parkinson disease

Asselta R;Duga S;
2011-01-01

Abstract

The Grb10-Interacting GYF Protein-2 (GIGYF2) gene has been proposed as the Parkinson-disease (PD) gene underlying the PARK11 locus. However, association of GIGYF2 with PD has been challenged and a functional validation of GIGYF2 mutations is lacking. In this frame, we performed a mutational screening of GIGYF2 in an Italian PD cohort. Exons containing known mutations were analyzed in 552 cases and 552 controls. Thereafter, a subset of 184 familial PD cases and controls were subjected to a full coding-exon screening. These analyses identified 8 missense variations in 9 individuals (4 cases, 5 controls). Furthermore, we developed a zebrafish model of gigyf2 deficiency. Abrogation of gigyf2 function in zebrafish embryos did not lead to a drastic cell loss in diencephalic dopaminergic (DA) neuron clusters, suggesting that gigyf2 is not required for DA neuron differentiation. Notably, gigyf2 functional abrogation did not increase diencephalic DA neurons susceptibility to the PD-inducing drug MPP+. These data, together with those recently reported by other groups, suggest that GIGYF2 is unlikely to be the PARK11 gene.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/629
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact