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Abstract

Background: Available therapies for Alzheimer’s disease (AD) can only alleviate and delay the 

advance of symptoms, with the greatest impact eventually achieved when provided at an early 

stage. Thus, early identification of which subjects at high risk, e.g., with MCI, will later develop 

AD is of key importance. Currently available machine learning algorithms achieve only limited 

predictive accuracy or they are based on expensive and hard-to-collect information.

Objective: The current study aims to develop an algorithm for a 3-year prediction of conversion 

to AD in MCI and PreMCI subjects based only on non-invasively and effectively collectable 

predictors.

Methods: A dataset of 123 MCI/PreMCI subjects was used to train different machine learning 

techniques. Baseline information regarding sociodemographic characteristics, clinical and 

neuropsychological test scores, cardiovascular risk indexes, and a visual rating scale for brain 

atrophy was used to extract 36 predictors. Leave-pair-out-cross-validation was employed as 

validation strategy and a recursive feature elimination procedure was applied to identify a relevant 

subset of predictors.

Results: 16 predictors were selected from all domains excluding sociodemographic information. 

The best model resulted a support vector machine with radial-basis function kernel (whole sample: 
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AUC=0.962, best balanced accuracy=0.913; MCI sub-group alone: AUC=0.914, best balanced 

accuracy=0.874).

Conclusions: Our algorithm shows very high cross-validated performances that outperform the 

vast majority of the currently available algorithms, and all those which use only non-invasive and 

effectively assessable predictors. Further testing and optimization in independent samples will 

warrant its application in both clinical practice and clinical trials.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive loss 

of memory and functional abilities that leads to severe dementia and eventually death. It is 

the most common neurodegenerative disease and currently affects 47 million people 

worldwide, being the top cause for disabilities in later life. The global cost of AD and 

dementia is estimated to be $818 billion, which is nearly 1% of the entire world’s gross 

domestic product. These numbers are projected to increase, with a global expected cost of $2 

trillion by 2030 and more than 131 million people suffering from this disorder by 2050 [1].

No cure or disease modifying treatment is currently available for AD and current treatment 

regimens only provide symptomatic relief [2]. By the time AD is clinically diagnosed, there 

is considerable multisystem degeneration that has occurred within the brain. As such, 

emerging treatments will likely have the greatest impact when provided at the earliest 

possible stage of the disease process [3, 4].

Therefore, the prompt identification of subjects truly at high risk of developing AD is a 

crucial issue still without a solution.

Mild cognitive impairment (MCI) is a condition characterized by changes in cognitive 

capabilities beyond what is expected for the subject’s age and education that are sufficiently 

mild that they do not interfere significantly with its daily activities. Individuals with such 

condition are at high risk of converting to dementia and especially AD in the next few years 

(20–40% of conversion rate by three years, with a lower rate evidenced in epidemiologic 

samples than in clinical ones [5, 6]).

Furthermore, even subjects with an intermediate state between normal cognition and MCI, 

i.e., the so called premild cognitive impairment (PreMCI) stage [7], are more likely to 

progress to a formal diagnosis of MCI or dementia within a two- to three-year period, and 

this might represent the earliest clinically definable stage of AD [8].

However, some subjects with MCI have shown to remain stable over years or even to recover 

to cognitively normal with no further progression to AD. This holds even more true for 

subjects with PreMCI than for those with MCI [8]. Different health problems other than 

neurodegenerative diseases can cause transient MCI and PreMCI conditions and these do not 
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necessarily lead to AD [9]. Thus, sole reliance on these precursor conditions are not enough 

to provide a precise identification of those subjects at true risk of later developing AD.

Beyond MCI and preMCI, several attempts to identify subject’s characteristics that may 

improve the prediction of progression to AD have been done. Investigations have regarded a 

vast variety of potential predictors, such as sociodemographic and clinical characteristics, 

cognitive performances, neuropsychiatric symptomatology, cardiovascular indexes, dietary 

and life habits, structural and functional neuroimaging investigations, gene typization, and 

several biomarkers assessed both in the cerebrospinal fluid and peripherally [10–16].

It is increasingly recognized that better predictive capability can be achieved by models that 

simultaneously exploit the information coming from several predictors, and machine 

learning can be used to create such models. This is a fast-growing field at the crossroads of 

computer science, engineering, and statistics “that gives computers the ability to learn 

without being explicitly programmed” [17]. Machine learning techniques use known 

training examples to create algorithms able to provide the best possible prediction when 

applied to new cases whose outcome is still unknown. Machine learning has been applied in 

the attempt to predict MCI-AD conversion in more than 50 published studies. Different 

combinations of the above-mentioned predictors were applied to various machine learning 

techniques in the attempt to predict conversion from MCI to dementia from one year to even 

five years after the baseline assessment. The results achieved vary broadly among studies, 

ranging from some that achieved performances just above the chance to a few showing high 

accuracy levels [18–26].

Despite this huge research effort, no gold-standard algorithm is available to predict 

progression in those at risk for AD and clinical translation is still lacking. All the “top 

performing” algorithms have not been tested in further independent samples thus far, and, in 

addition, certain predictors employed by some models may represent a significant barrier to 

their clinical adoption due to their high costs and/or invasiveness (e.g., fludeoxyglucose 

positron emission tomography scans or lumbar puncture).

Considering all the above-mentioned issues, the current study aims to be the first step in the 

development of a clinically-translatable algorithm for the identification of the conversion to 

AD in subjects with either MCI or PreMCI. To be quickly adoptable in clinical practice, the 

algorithm should include only non-invasive predictors that are either already routinely 

assessed or effectively introducible in clinical practice, and achieve a high predictive 

accuracy. Considering the evidence available so far, we hypothesize that the information 

provided by sociodemographic characteristics, clinical and neuropsychological tests, 

cardiovascular risk indexes, and clinician-rated level of brain atrophy might allow achieving 

this. In this investigation, a series of machine learning algorithm will be developed and 

cross-validated within a sample of patients with either MCI/PreMCI whose diagnostic 

follow-up was available for at least three years after the baseline assessment. Out-of-the-

sample testing of the best algorithm in independent samples of MCI/PreMCI patients will be 

performed in a further phase.
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MATERIALS AND METHODS

Subjects

Data regarding 90 subjects with MCI and 94 subjects with PreMCI at baseline and with 

available diagnostic follow-up assessments for at least three years were included in the 

study.

These are part of a dataset that collects several patients recruited in a study investigating 

longitudinal changes associated with MCI and normal aging, which involved community 

volunteers as well as subjects recruited from the Memory Disorders Clinic at the Wien 

Center for Alzheimer’s disease, the Memory Disorders at Mount Sinai Medical Center, 

Miami, Beach, Florida, and the community and memory disorders center at the University of 

South Florida which were collaborative partners in an Alzheimer’s Disease Research Center 

(ADRC). All subjects at each of the sites had a common clinical and neuropsychological 

battery as described below.

Considering the final aim of developing a predictive algorithm to be used in clinical practice, 

no other inclusion or exclusion criteria were applied beyond these diagnostic criteria. 

Subjects were classified as converters to probable AD (cAD; n=48, 26.1%) if they presented 

a Dementia syndrome by DSM-IV-TR criteria [27] during at least one of the follow-up 

assessments occurred within three years from the baseline investigation, and satisfied the 

National Institute of Neurological and Communicative Disorders and Stroke/Alzheimer’s 

Disease and Related Disorders Association criteria for AD [28]. Otherwise they were 

classified as non-converters to AD (NC; n=136, 73.9%).

The study was conducted with the ethical standards of the relevant national and institutional 

committees on human experimentation and with the Helsinki Declaration of 1975, as revised 

in 2008. All subjects gave their written informed consent to the use of their clinical data for 

scientific research purposes.

Feature extraction

Considering our aim to employ only predictors that are non-invasive and that are either 

already routinely assessed or cost-effectively introducible in clinical practice, we decided to 

focus on information available in our dataset that regard diagnostic subtypes, 

sociodemographic characteristics, clinical and neuropsychological test scores, 

cardiovascular risk indexes, and levels of medial temporal lobe brain atrophy in the 

hippocampus (HPC), entorhinal cortex (ERC), and perirhinal cortex (PRC) as assessed by a 

clinician-rated Visual Rating Scale (VRS) [29].

Among all the variables related to these domains, some of them were not assessed in all 

recruited subjects. Variables that had more than 20% missing values in either the cAD or NC 

groups were discarded. The following pieces of information were finally used.

Sociodemographic characteristics

Gender, age (in years), and years of education calculated by years of schooling and highest 

degree obtained.
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MCI subgroups

Subjects were classified as MCI if they presented subjective memory complaints by the 

participant and/or or collateral informant, evidence of decline from clinical history and 

evaluation. All of the MCI patients had a global Clinical Dementia Rating (CDR) score [30] 

of 0.5. Those who had one or more memory measures (including the Hopkins Verbal 

Learning Test Revised, the Fuld Object Memory Evaluation, Logical Memory Delay and 

Visual Reproduction of the WMS-IV, Trial Making Test, Category Fluency, Letter Fluency 

and Block Design of the Wechsler Adult Intelligence Scale – Version 3) 1.5 standard 

deviation or greater below expected normative values were defined as belonging to the 

amnestic mild cognitive impairment (aMCI) subgroup. MCI subjects with non-memory 

impairment only were defined as non-amnestic mild cognitive impairment (non-aMCI).

PreMCI subgroups

As defined by Loewenstein and colleagues [8], those individuals who had a global CDR of 0 

but had memory or non-memory neuropsychological deficits as described above were 

diagnosed as Premild Cognitive Impairment – neuropsychological subtype (PreMCI-np). 

Participants who obtained a global CDR of 0.5 and had within normal limits performance on 

neuropsychological testing were classified as Premild Cognitive Impairment – clinical 

subtype (PreMCI-cl).

Clinical scales

The CDR [30] is a 5-point scale (0=none; 0.5=very mild, 1=mild, 2=moderate, 3=severe) 

used to characterize six domains of cognitive and functional performance in AD and related 

dementias: Memory, Orientation, Judgment & Problem Solving, Community Affairs, Home 

& Hobbies, and Personal Care. The rating is obtained through a semi-structured interview of 

the patient together with other informants (e.g., family members). The global score was used 

in the analyses. The memory sum score of a modified informant-based version of CDR 

(ModCDR-M) was also available and used (range 0–12) [31]. The Geriatric Depression 

Scale (GDS) is a 30-item yes-no self-report assessment used to identify depression in the 

elderly [32] and the total score was included in the current analyses (range 0–30).

Visual Rating Scale for brain atrophy

HPC, ERC, and PRC atrophy levels were assessed with a 0–4 VRS [29]. This is an 

adaptation from the original Scheltens’ VRS for the global assessment of medial temporal 

atrophy [33]. VRS ratings for HPC, ERC, and PRC were performed in each hemisphere on a 

magnetic resonance imaging (MRI) image of a standardized coronal slice, perpendicular to 

the line joining the anterior and posterior commissures, intersecting the mammillary bodies 

and on adjacent slices. All these 6 VRS measures were separately included as predictors in 

this study. Ratings are based on a five-point scale: 0=no atrophy, 1=minimal atrophy, 2=mild 

atrophy, 3=moderate atrophy, and 4 = severe atrophy. A computer interface provides a 

library of reference images defining the anatomical boundaries of each brain structure and 

depicting different levels of atrophy. The whole rating usually takes 5 to 6 minutes per 

subject [34] and excellent inter-rater (kappa, 0.75 to 0.94) and intra-rater (kappa, 0.84 to 
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0.94) agreements have been reported [29, 34]. VRS measures of HPC and ERC have already 

proved to be predictive of later conversion to AD in MCI patients [35].

Neuropsychological tests

The Hopkins Verbal Learning Test Revised – Total Recall (HVLTR-R) and Hopkins Verbal 

Learning Test Revised – Delayed Recall (HVLTR-D) scores [36] measuring the verbal 

learning and memory, the Semantic Interference Test – Total Retroactive (SIT-RT) and 

Semantic Interference Test – Total Recognition (SIT-RC) scores [37] measuring memory 

function and interference, and the Trial Making Test – version A (TMT-A) and Trial Making 

Test – version B (TMT-B), both errors and time [38], measuring visual-motor coordination 

and attentive functions were considered. Moreover, the Digit-Symbol-Coding Test (DSC), 

the Block Design (Raw Score) and the Similarities tests of the Wechsler Adult Intelligence 

Scale – Version 3 [39], which investigates respectively associative learning, visuospatial 

function and verbal comprehension, and the Delayed Visual Reproduction Test (DVR) and 

the Logical Memory Test – Immediate Recall (LM-I) and Logical Memory Test – Delayed 

Recall (LM-D) scores of the WMS-IV [40], which measure visual and verbal memory, were 

also included.

Cardiovascular risk indexes

Subjects were assessed by physician regarding heart rate, presence or absence of 

hypertension, high cholesterol levels, diabetes, history of tobacco use, history of myocardial 

infarction, history of coronary bypass/angioplasty, and history of stroke/transient ischemic 

attack.

Continuous variables were standardized and categorical variables were coded in order to 

optimize the number of classes. Categorical cardiovascular risk indexes were re-coded 

dichotomously and the diagnostic variable was the only polytomous variable, indicating the 

four diagnostic subgroups (aMCI, non-aMCI, PreMCI-np, PreMCI-cl). In the end, 26 

continuous, 9 dichotomous categorical, and one four-class categorical features were used. 

The full list is available in Table 1.

123 subjects have no missing data for all these variables (cAD=30, 24.39%; NC=93, 

75.61%) and constitute the final sample used in the current study.

Machine learning techniques

Several machine learning procedures exist to solve classification problems. In the current 

study, we decided to proceed with the following supervised techniques.

All analyses were parallelized on a Microsoft® Windows® server equipped with two 6-cores 

X5650 Intel® Xeon® 2.66GHz CPUs and were performed in R [44], using the 

implementation of the machine learning techniques available in the caret package [45].
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Elastic Net

EN is a regression method that adds two types of penalties during the training process. These 

penalties are the L1 norm of the regression coefficients, as used in LASSO (least absolute 

shrinkage and selection operator) regression

λ1 ∑
j = 1

F
β j

and the L2 norm, as used in ridge regression

λ2 ∑
j = 1

F
β j

2

with j indicates the feature, βj the regression coefficient of the jth feature, and λ1 and λ2 are 

two parameters that define the amount of penalization provided by each of the two terms 

[41]. The result of including these two penalization terms is a “shrinkage” (i.e., 

regularization) of the regression coefficients that limit the risk of overfitting, that is when the 

created algorithm is too good in correctly predicting the cases included in the training 

sample while having poor performance when used to make prediction in new ones. 

Moreover, the use of the L1 penalty during training produces also an implicit feature 

selection, reducing some coefficient to 0 and thus removing some of them form the 

algorithm. The final predictive model is a logistic regression equation. Thus, the training 

procedures cannot automatically model non-linear relationships and interactions among 

predictors, unless polynomials and interactions are “handcrafted” and a priori inserted as 

features in the model.

Elastic Net with polynomial features

Considering the explanation above, EN models including degree three polynomials of the 

continuous features were also trained.

Support vector machine

Intuitively, in this algorithm, each case can be viewed as a point in n-dimensional space, 

where n is the number of features. During the learning process, the linear hyper-plane that 

optimize the separation of the two classes in such multi-dimensional space is found. New 

examples are then “plotted” into that space and predicted to belong to a class based on which 

side they fall on. However, this would allow only to solve so-called linearly separable 

problems, likewise to what logistic regression can achieve, but SVMs can also perform non-

linear classification, transforming the original feature space to a higher dimensional space 

(i.e., creating several new features from the original ones) where the classification problem 

may better result linearly separable. To perform this transformation in a computationally 

efficiently manner, the so-called “kernel trick” can be applied, which avoids the explicit 

transformation that is needed to get linear learning algorithm to learn to perform nonlinear 

classification. Instead, it enables to operate in an “implicit” feature space without ever 

computing the coordinate of each case in the new higher dimensional space, but by simply 
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computing the distance of all pairs of cases only considering the original features. In this 

study, we used the radial basis function (Gaussian) kernel, that is

K x, x′ = e
− x − x′ 2

2σ2

where x and x′ the two feature vectors of two distinct cases and ||x – x′|| is the Euclidean 

distance between the two (see below for the formula).The kernel parameter σ must be set 

and requires optimization during the training of the algorithm. Furthermore, also a further C 

parameter requires optimization. Intuitively, the latter is a regularization parameter that, 

similarly to the λ2 in EN, is useful to improve the generalized performance of the model 

allowing a trade-off between error in the training sample and model complexity. A detailed 

explanation of SVM and the kernel trick can be found in [42].

Gaussian processes (GP)

GP is a method based on Bayesian theory that can be applied in solving both regression and 

classification problems, modelling the relationship between the inputs and the outputs 

following a Bayesian probabilistic approach. A Gaussian process can be viewed as a 

distribution over functions, and inference consists of applying Bayes’ rule to find the 

posterior function distribution that best approximates the training data. The covariance 

function matrix of the model can be substituted with a kernel matrix, which represents the 

counterpart of the “kernel trick” seen before. The radial basis kernel was used also for GP 

and again this kernel has σ as parameter that requires optimization. A detailed explanation of 

GP can be found in [43].

k-Nearest Neighbors (kNN)

In the kNN, at first the distances (i.e., the dissimilarity) between a new case and all known 

examples (i.e., those included in the training set whose output is already known) is 

calculated. In this analysis, the Euclidean distance was used as distance metric, that is

∑
i = 1

N
ci − ei

2

were c is the new case, e is a known example and i is each of the N features. To make the 

prediction, the k less distant examples, also called its nearest neighbors, are taken into 

account and class prediction is performed considering the number of nearest neighbors 

belonging to each class. K is a hyper-parameter that may take integer values varying from 1 

up to the size of the training sample and requires optimization during the training phase.

Cross-validation procedure

All the machine learning techniques used in this study have different so-called hyper-

parameters that allow a different tuning of the algorithm during the training process. These 

are λ1 and λ2 in EN and EN-poly, σ and C in SVM, σ in GP, and k in kNN. We trained each 
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model, when possible, with up to 200 random hyper-parameter configurations. Different 

configurations of these parameters lead to algorithms with different predictive performances. 

Specifically, we are interested in achieving the best possible performance when the 

algorithm is applied to new cases that are not part of the training sample.

Considering the small sample size available at this phase, we used cross-validation to 

provide an estimate of such generalized performance. In cross-validation, the train sample is 

divided in several folds of cases. Training is iteratively performed with the remaining cases 

not included in each fold and then the algorithm is tested on the fold cases. Several different 

cross-validation protocols exist (e.g., n-fold, repeated n-fold, leave-one-out-cross-

validation). Recent simulation studies found the rarely applied leave-pair-out cross-

validation (LPOCV) protocol to be the best choice when the sample size is limited, being 

nearly unbiased compared to other commonly applied options such as leave-one-out-cross-

validation that instead leads to biased estimate [46, 47]. In our study, LPOCV implies to use 

as folds all possible combinations made of one cAD and one NC. The flaw of LPOCV is its 

high computational expensiveness. For each attempted hyper-parameter configurations, the 

training process is performed excluding each defined pair (2790 pairs in the current study) 

from the training sample and calculating the performance of the algorithm in this left-out 

pair. Finally, the average performance metric is taken as estimate of the generalized 

performance of the algorithm created with that particular technique and hyper-parameter 

configuration.

The performance achieved during the LPOCV procedure will be considered as a first 

estimate of the performance for the algorithm when applied to new cases. A test of the 

model that showed the best LPOCV performance will be performed as a future step using a 

fully independent dataset. Even if this further investigation is usually lacking for machine 

learning models developed in the medical field, this will provide a more accurate estimate of 

the algorithm predictive performance when applied to clinical samples.

Performance metrics

As primary performance metric, the Area Under the Receiving Operating Curve (AUC) was 

used. At first the algorithms output a continuous prediction score (range: 0–1; the closer to 1 

the higher the predicted risk of conversion for that subject) and then the dichotomous 

prediction of cAD/NC is finally made setting a cut-off score (cAD if above or equal to the 

cut-off score, NC if below). The AUC value can be interpreted as the probability that a 

randomly selected cAD subject will receive a higher output score than a randomly selected 

NC subject, no matter which cut-off is applied to the output score. The AUC is 0.5 when the 

algorithm makes predictions at random and 1 in case it is infallible. Considering the LPOCV 

protocol applied in the analyses, the cross-validated AUC was calculated with the following 

formula:

1
c ∑

p = 1

c
1if f p xcAD, p > f p xNC, p

0.5if f p xcAD, p = f p xNC, p

0if f p xcAD, p < f p xNC, p
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were c in the number of LPOCV pairs, f is the output function of the algorithm, xcAD,p is the 

converter and xNC,p is the non-converter of the each pair. The hyper-parameter configuration 

for each machine learning technique that produced the best cross-validated AUC was finally 

retained. As we could not find in the literature any proposed asymptotic procedure to 

calculate the cross-validated AUC confidence interval (CI) with the LPOCV protocol, we 

calculated them with a stratified bootstrap procedure, generating 10000 new samples 

randomly sampling with replacement the original one and keeping the same frequency of 

cAD e NC subjects. The distribution of the new 10000 AUC calculated in the bootstrap-

generated samples was used to calculate 95%CI with the bias-corrected and accelerated 

(BCa) approach [48].

The algorithm with the highest performance will be compared to all other algorithms with a 

paired-sample t-test calculating the standard deviation of the AUCs difference with the 

10000 stratified bootstrap-generated samples, based on what proposed in [49].

Moreover, the cross-validated levels of specificities and balanced accuracy values when 

sensitivity approached to 0.95, 0.9, 0.85, 0.8, 0.75 were calculated. The cut-off applied to the 

algorithm output scores was progressively increased starting from 0 and the thresholds 

providing the closest sensitivity to the aforementioned ones was used to calculate the two 

other values. The sensitivity and specificity at the best achieved balanced accuracy were also 

calculated.

To provide distinct predictive performances in the two subpopulations and ease the 

comparison with previously published models that usually addressed only MCI patients, all 

performance metrics were also separately calculated in the MCI and PreMCI subsamples. 

Only the cross-validation pairs containing two MCI and two PreMCI subjects (one cAD and 

the other NC) were used. Considering that only three converting PreMCI subjects were 

available, results in the PreMCI subsample should be taken just as a preliminary evidence.

The advantage of using AUC, sensitivity, specificity and balanced accuracy over other 

performance metrics (e.g., accuracy, positive predictive value, negative predictive value) is 

that they are independent from the prevalence of the two outcome classes. Given that the 

observed rate of conversion to AD may not be the same in different independent samples, 

these metrics provide more stable performance estimates and ease the comparison with the 

performance achieved in other studies.

Feature selection

Training was initially performed including all the 36 features. Only EN and EN-poly 

automatically operate a selection of features that are finally included in the algorithm. 

Excluding non-relevant and redundant features and reducing the dimensionality of the 

algorithm feature-space usually brings to better generalized predictive performance. SVM, 

GP, kNN, and LR do not automatically operate any feature selection during the training and 

so, for these techniques, we re-performed the training and hyperparameter optimization 

process with two reduced set of features.
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At first, we included only those features selected by the final EN model. Then, we applied a 

recursive feature elimination (RFE) method with Random Forest as implemented in the rfe 

function of the caret R package [45]. Detailed description of the algorithm can be found at 

the following webpage: http://topepo.github.io/caret/recursive-featureelimination.html. In 

brief, a Random Forest model is initially trained with all features in each cross-validation 

fold. Features are ranked according to their importance through a permutation procedure and 

then the training is re-performed iteratively removing the least ranked feature until when all 

features have been removed. The optimal number of features is selected according to the 

average performance of all cross-validated folds. At the end, the model is trained with the 

whole sample, features are ranked and those falling in the previously identified optimal 

number of features are retained. As different initial conditions may lead to different final 

feature subsets, we performed the RFE procedure 100 times with random initialization. We 

finally included only those features that were selected in more than 50 of the 100 repetitions 

and we used these to train the SVM, GP, kNN, and LR models.

The same paired-sample t-test with bootstrap resampling was also used to test the 

significance of the change in the LPOCV AUC achieved applying the two aforementioned 

feature selection procedure compared to including all the features.

Feature importance

While ranking the importance of features in linear models is straightforward (e.g., in GLM 

and EN), this is a particularly uneasy task in more complex models (e.g., non-linear kernel 

SVM and GP). The latter are sometimes referred as black-box models, making it hard-

to-”impossible” to extract the rules that relate each feature to the outcome. Moreover, 

different strategy exists for different techniques and a gold-standard procedure has not been 

defined yet.

To provide a general ranking of the importance of the predictors, the LPOCV AUC of each 

of the 36 features when taken individually was calculated. This gives a metric of importance 

for each predictor that is independent from both the applied technique and all other 

predictors. The 95% CI with the abovementioned stratified bootstrap procedure were also 

calculated. Feature importance indicated by the LPOCV AUC was compared with the 

selection of features operated by the two feature selection procedures applied in our 

analyses.

RESULTS

Final analyses required approximately 23 hours of non-stop computations (excluding 

exploratory and preliminary analyses, and debugging). Descriptive statistics of each feature 

in both the cAD and NC groups are reported in Table 1. Statistics of continuous features are 

reported before the standardization was applied.

Cross-validated predictive performance of algorithms

The cross-validated AUC for each of the final models is reported in the Table 2 and Fig. 1. 

SVM, GP, and kNN globally achieved better performances then the techniques that cannot 

model the interaction between the features, i.e., LR and EN. The latter performed generally 
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poorly, even when feature selection strategies were applied to LR and polynomial features 

were inserted in the EN. LR without feature selection, which was used as reference 

technique, resulted very poorly performing, being the worst performing model and the sole 

one showing an AUC below 0.8 (AUC=0.692; C.I. 95% bootstrap=0.598, 0.788).

SVM with the features selected by the RFE procedure is the technique that achieved the 

highest cross-validated AUC (AUC=0.962; C.I. 95% bootstrap=0.923, 0.987). The results of 

the paired-sample t-test with stratified bootstrap resampling evidenced that the AUC of this 

model was statistically significantly higher (p<0.05) than all other algorithms, except for the 

algorithm ranked second (SVM RFE versus GP RFE: p=0.074). The model achieved high 

predictive performances also when the two subgroups were considered separately, although 

lower in the MCI subsample (AUC=0.914; C.I. 95% bootstrap=0.822, 0.975) and very high 

in the PreMCI subsample (AUC=0.994; C.I. 95% bootstrap=0.932, 1).

The cross-validated levels of specificity and balanced accuracy when sensitivity approached 

0.95, 0.9, 0.85, 0.8, 0.75, as much as the sensitivity and specificity at the best achieved 

balanced accuracy are reported in Table 3. Considering the whole sample of both MCI and 

PreMCI subjects, the best achieved cross-validated balanced accuracy is 0.913 

(sensitivity=0.956, specificity=0.871). Again, performances were still high but lower in 

magnitude in the MCI subsample, with a best balanced accuracy of 0.874 (sensitivity=0.880, 

specificity=0.867). Instead, preliminary results in the PreMCI subsample presented very 

high performances, with a best balanced accuracy of 0.980 (sensitivity=1, 

specificity=0.960).

Efficacy of feature selection procedures

The features selected by both the EN model with the best hyper-parameter configuration and 

the RFE procedure are also specified in Table 1. The RFE procedure used in this study 

resulted effective in identifying a relevant subset of the initial features, leading in all 

techniques to a significant improvement of the cross-validated performances compared to 

the use of all features (SVM versus SVM RFE: p=0.015; GP versus GP RFE: p=0.023; kNN 

versus kNN RFE: p=0.048; LR versus LR RFE: p<0.001). Moreover, also the models ranked 

second and third were GP and kNN with the features selected by the RFE procedure and 

they both achieved a AUC higher than 0.9.

Instead, the approach of using the features selected by the EN model was not particularly 

efficacious, leading to not statistically significant improvements in GP, kNN, and LR and 

even leading to a reduced performance in SVM.

Feature importance

The LPOCV AUC of each of the 36 features is reported in Table 4, ranked from the highest 

to the lowest AUC, and in Fig. 2, subdivided based on their type (i.e., sociodemographic, 

diagnosis, clinical, VRS, neuropsychological tests, and of cardiovascular risk indexes).

The sociodemographic features had poor predictive capability. All their AUC resulted below 

0.65 and only age achieved statistical significance (lower bound of the 95% C.I. higher than 
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0.5). As a matter of facts, neither the EN model nor the RFE procedures selected any of the 

sociodemographic features to be included in the models.

The baseline diagnosis (i.e., aMCI, non-aMCI, PreMCI-np, and PreMCI-cl) resulted instead 

quite predictive, with an AUC of 0.759. This is again in accordance with both the feature 

selection procedure that identified these features as those to be retained.

Among the clinical scales, only the ModCDR-M score resulted with both a significant and 

relevant cross-validated AUC (AUC=0.730), being the sole selected by both the feature 

selection procedures. The global CDR score, although resulting with a statistically 

significant AUC, had an AUC very small in magnitude (AUC=0.559).

The AUC of the six VRS scores ranged from 0.761 (right ERC atrophy) to 0.647 (the left 

PRC atrophy). The left PRC atrophy score was the sole not selected by the RFE procedure 

while all VRS scores were included in the final EN model.

Among the fourteen neuropsychological test scores, the HVLTR-R and HVLTR-D scores, 

the SIT-RT and SIT-RC scores, LM-I and LM-D scores of the Weschler Memory Scale – 

Fourth Edition (WMS-IV) resulted the tests with the highest predictive performances (all 

AUC above 0.750) and these were all selected by both the feature selection procedures. The 

DVR score of the WMS-IV also resulted able to provide statistically significant although 

less precise prediction of conversion (AUC=0.718), as much as TMT-A and TMT-B errors 

(AUC ranging between 0.6 and 0.7). Of these, both time and errors of the TMT-B resulted 

included also in the final EN model, while the RFE procedure selected only TMT-B errors.

Finally, among the cardiovascular risk features, only history of stroke/TIA and history of 

coronary bypass/angioplasty were found to have an AUC statistically significant and higher 

than 0.6. Interestingly, the selection of these features by the two feature selection procedures 

resulted quite different from this evidence. The final EN model did not include any of the 

cardiovascular risk features, while the RFE selected history of myocardial infarction and 

heart rate, which had a non-significant LPOCV AUC, and not history of myocardial 

infarction and history of coronary bypass/angioplasty.

DISCUSSION

The current study represents the first step in the development of a novel machine-learning 

algorithm for the identification of three-year conversion to AD in subjects with either MCI 

or PreMCI. Such an algorithm aims in the end to be efficiently applicable in clinical 

practice, which require it to achieve high accuracy and to be based on predictors that can be 

easily and effectively assessed in clinical settings.

The algorithms developed in this study promise to fulfill both these requirements. We 

employed only predictors based on sociodemographic characteristics, clinical and 

neuropsychological tests, cardiovascular risk indexes, and level of brain atrophy as assessed 

by clinicians through the VRS from structural MRI images. With these pieces of 

information, our best algorithm achieved a global cross-validated AUC higher than 0.96, 

with a AUC higher than 0.91 also in the MCI subsample. This indicates that our best 

Grassi et al. Page 13

J Alzheimers Dis. Author manuscript; available in PMC 2019 January 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



algorithm already outperforms the clear majority of the several previously proposed 

algorithms. Furthermore, to the best of our knowledge, this is the only available predictive 

model that was developed for subjects at a PreMCI stage, showing very high preliminary 

performance (AUC>0.99) also in the PreMCI subgroup.

Translation to clinical practice

Among all the algorithms we developed, the one which showed the best performance was 

the SVM with radial-basis function kernel that included only the features selected via the 

RFE procedure. Regarding the MCI subsample, roughly 88% of specificity and 87% 

sensitively are the levels that resulted maximizing the overall cross-validated balanced 

accuracy (87%). We also found results of a nearly perfect identification of cAD in the 

PreMCI subsample (cross-validated accuracy=98%), although these should be considered 

preliminary as we only had three cAD PreMCI subjects in our sample. Further testing in 

independent clinical samples would finally confirm these results.

The predictive capabilities achieved by this model would make its application useful in 

clinical practice as much as in clinical trials, representing a relevant improvement in the 

current possibility to identify only those subjects truly at risk of converting to AD. 

Moreover, it would be possible to further optimize the desired levels of specificity and 

sensitivity according to the cost associated in predicting false positives and negatives.

In addition, although the prediction scores output by some techniques does not represent true 

probabilities, there are procedures that can calibrate them so that they can provide the 

individual risk of conversion. Considering that having not only a categorical prediction but 

also the associated risk of conversion would be of great clinical utility, we plan to perform 

such calibration with Platt scaling [50] or isotonic regression in the next step of the 

development of the algorithm, when a further independent sample will be available.

We achieved the obtained results employing routine collectable information. All the 

measures we used as predictors are non-invasive and can be easily introduced in any clinical 

center without requiring any particular difficulty or the purchase of non-standardly available 

equipment. All the neuropsychological tests do not necessitate any intensive training and can 

be administered by a technician under the supervision of a neuropsychologist. Moreover, the 

availability of machines for structural MRI is now widespread and the VRS is fast and easily 

adoptable thanks to the availability of a software with reference images that guide the 

clinician during the rating, providing training for the relatively uninitiated radiologist, 

neurologist, or any other interested rater [34]. The VRS overcomes the issue of MRI data 

obtained from different machines, which are usually non-automatically comparable. All the 

remaining information we considered, such as sociodemographic, clinical, and 

cardiovascular risk, can be readily collected during neurological interviews.

Comparisons with other available machine learning algorithms

Several machine learning algorithms have been previously proposed to predict the MCI to 

AD conversion. Among those that used only baseline information and make a prediction of 

conversion in about three years, we could identify only a few achieving performances 

similar or superior to the ours, and they are reported in Table 5.
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Specifically, five studies evidenced superior performances. The algorithm proposed by 

Argwal and colleagues [18] uses a selection of blood plasma proteins as sole predictors. This 

is a very interesting result as their model uses information from a different domain and it 

may be partially complementary to the features we used. Also, the prediction is entirely 

based on the analysis of a single blood sample and even if the assessment of such protein 

blood levels is not currently clinical routine, it requires a very little invasive procedure and 

may be developed so to result cost-effectively adoptable in clinical practice. However, these 

results come from a small training sample and further investigation is necessary to evidence 

the soundness of such promising results.

Three further algorithms have been developed based on structural MRI data: those proposed 

by Minhas and colleagues [19], and Plant and colleagues [20] were trained and cross-

validated in very small samples, respectively of 13 and 24 MCI subjects, while Long and 

colleagues [26] used a larger sample (n=227). All these algorithms showed very high cross-

validated performance. However, they directly use structural MRI data and considering the 

difficulties of employing together data coming from different scanners [51], this may place a 

barrier to an efficient dissemination of such algorithms into clinical practice.

Finally, also Hojjati and colleagues proposed an algorithm [25] with high predictive 

accuracy based on resting state functional MRI data. If the availability of MRI machines in 

clinical setting is quite common nowadays, functional MRI is still mainly used in research 

settings. Thus, such algorithm may currently result difficulty applicable in clinical practice.

Additional studies proposed algorithm with performances similar to the ours. Three studies 

employed predictors that may not allow an easy translation to clinical practice: Morandi and 

colleagues [22] used structural MRI data, Dukart and colleagues [23] both structural MRI 

and fludeoxyglucose positron emission tomography data, and Apostolova and colleagues 

[24] cerebrospinal fluid p-tau protein levels.

Instead, Clark and colleagues [21] used only sociodemographic, clinical, and 

neuropsychological test scores, achieving high cross-validated performances although 

inferior to those achieved by our best model. Two other studies proposed algorithms based 

only on these types of predictive information [52, 53]. They also achieved high predictive 

performances but inferior to Clark’s algorithm.

Considering this evidence, our and these three algorithms are the only currently available 

that achieved a relevant predictive performance using only predictors that may be easily 

assessed in nowadays clinical practice, with our algorithm that seems to outperform all of 

them. As we used different predictors than those employed in these other algorithms (i.e., 

they did not use brain atrophy levels assessed via the VRS but included the scores of 

different neuropsychological tests), it would be of great interest to investigate in the next 

steps if adding such predictors to our features would bring a further increase in the predictive 

performance of our algorithm.
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Importance of predictors

As mentioned above, the interpretation of the predictor importance in non-linear models, 

such as SVM, GP, and kNN, is a complex and not yet solved issues. Considering this, in the 

current study we decided to focus only on evaluating the individual importance of each 36 

predictors initially considered in this study.

While sociodemographic and cardiovascular risk were not particularly predictive, memory 

and brain atrophy seems to be the most relevant for the prediction of AD conversion. The 

HVLTR, SIT, and LM tests were identified as the most relevant cognitive measures by all 

feature selection and importance procedures and they all assess different aspects of memory. 

The ModCDR-M score was also suggested as a particularly relevant feature. The important 

role of memory functioning as predictor was somehow expected considering previous 

findings [54] and that memory deficits are the core clinical characteristics that defines AD. 

Also, the evidence of an important role of brain atrophy is in line with previous evidence 

[55] as well as several other studies which developed highly performing machine learning 

algorithms starting from structural MRI data, alone (i.e., [20]) or in combination with 

neuropsychological test scores (i.e.,[19,22]). Memory deterioration and brain atrophy may 

begin years before a full-blown AD diagnosis can be made and a proper set of sensible 

measures can allow to promptly identify them. Our study further suggests that machine 

learning techniques have the potential to exploit such information to early identify those 

subjects in which the onset of the pathophysiological processes leading to AD has been 

occurring.

Limitations

Our study has some potential limitations that should be taken into account. We used cross-

validation as validation procedure but further testing in an independent sample of new cases 

has not been performed yet. However, nearly all the algorithms proposed to make a MCI-to-

AD prediction currently lack such further testing. Furthermore, the sample we used to train 

the algorithm was limited in size and included only three cAD PreMCI. Thus, the 

performance estimate obtained for the PreMCI should be considered as very preliminary and 

requires further investigation.

We applied only some of the many machine learning as well as feature selection procedures 

available. Although we have already reached good results, there is no guarantee that other 

machine learning procedures and other subsets of features would allow to achieve even 

better predictive accuracy.

Moreover, all subjects of our sample were recruited in the same abovementioned clinical 

centers. The population referring to these might have peculiar characteristics and algorithms 

might perform less well in different MCI and PreMCI populations. Also, both the features 

and subjects we finally included were selected from a larger set of available variables and 

subjects according to the lack of missing values. Their occurrence in such excluded variables 

and subjects may be due to reasons that are beyond mere randomness, potentially limiting 

the representativeness of our feature set and train sample and thus leading to biases in our 

algorithm.
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Given these current issues, we plan to test the performance in a new sample of MCI and 

PreMCI subjects participating in a new longitudinal study in Miami, currently in its third 

year, as well as to try new procedures for further optimization.

Another potential shortcoming is the complexity of providing a clear explanation of the role 

that each feature plays in the prediction. While a first basic approach has been attempted in 

this study, more strategies will be applied while proceeding in the next phases with larger 

samples and a future study will be addressed in attempting to open the model black-box. A 

better interpretability of the model will help both in gaining further understandings of how 

these variables are related to the development of AD and in generating more trust towards 

the application of model by clinicians as much as patients.

Conclusion

In conclusion, we used supervised machine learning techniques to develop algorithms able 

to identify which subjects with PreMCI and MCI will convert to AD in the following three 

years. As the opportunity of an efficient clinical translation was one of the main goal 

motivating our study, we used predictors based only on sociodemographic characteristics, 

clinical tests, cognitive measures, cardiovascular risk indexes, and level of brain atrophy as 

assessed by clinicians through the VRS from structural MRI images. We promisingly 

achieved high predictive performance, among the very best of the many algorithms available 

in literature and the best achieved so far using only information easily collectable in clinical 

practice. Considering these results, we plan to proceed in further testing and optimization in 

other independent and larger samples as to reach the level of reliability necessary for an 

actual applicability.
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Fig. 1. 
AUC of algorithms. The figure indicates the cross-validated AUC and its 95% bootstrap CI 

for each algorithm. Algorithms are grouped according to the machine learning techniques. 

The different feature selection procedure applied are indicated below, as well as by different 

point shapes (circle=all features; square=features selected via EN, triangle=features selected 

via RFE).
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Fig. 2. 
AUC of individual predictors. The figure indicates the cross-validated AUC and its 95% 

bootstrap CI when prediction is made by each single predictor. Predictors are grouped 

according to conceptual domains, in descending order sociodemographic information, 

diagnosis, clinical scores, brain atrophy, cognitive measures and cardiovascular risk index. 

Non-significant AUC (i.e., lower bound of the CI lower than or equal to 0.5) are in grey, 

significant ones in black.
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