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The global burden of bronchiectasis is increasing, and there 
remains a lack of proven treatment options due to disease 
heterogeneity. This is, however, being addressed through 

endophenotyping efforts and the identification of treatable traits1–4. 
Recurrent infection and inflammation result in progressive, irre-
versible airway dilatation characterized by an altered airway micro-
biome2,5,6. Bacterial, viral and fungal communities in bronchiectasis 
have been found to be associated with clinical outcomes, includ-
ing exacerbations7–9. Although specific pathogens are implicated in 
bronchiectasis exacerbations, prior bacterial microbiome studies 
show minimal actual change during exacerbations-based analyses of 
dominant taxa or dissimilarity metrics, thereby demonstrating our 
incomplete understanding of the microbiome’s role10. Exacerbation 
occurrence and frequency in bronchiectasis and other respiratory 
diseases remain a major cause of morbidity and a key driver of 
mortality. The precise microbial relationships underpinning exac-
erbations are complex, however, the general consensus is the sim-
plistic model in which single-kingdom bacterial overgrowth causes 
infection, which is then suppressed by antibiotics5,10,11. Disease  
heterogeneity in bronchiectasis has hindered success in clinical  
trials, but, given the variability in clinical, immunological and 

inflammatory phenotypes, etiologies and therapeutic responses, 
patient stratification based on the microbiome could provide 
focused and precision-based therapy7,12,13. Microbiome studies to 
date have considered bacteria, viruses and fungi as separate entities, 
but the true microbiome consists of all microorganisms and their 
genes, including bacteria, viruses and fungi. Prior studies are there-
fore incomplete, and a greater understanding of disease is likely to 
be gained through holistic and integrated so-called multi-biome 
analysis that more accurately represents the in vivo state. Here we 
perform an integrated multi-biome analysis of the bronchiectasis 
airway combining bacterial, viral and fungal community profiles 
from individual patients, as well as longitudinal assessment during 
exacerbations. We demonstrate that integrative microbiomics pro-
vides a novel framework for understanding exacerbations and has 
potential applications across the spectrum of respiratory disease.

Results
Multi-biome data integration by weighted similarity network 
fusion. To evaluate the bronchiectasis microbiome, we assessed 
respiratory specimens from 217 patients. These specimens cap-
tured bacterial, fungal and viral taxa (three datasets per patient; 651 
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biomes in total). Patients were recruited as part of the cross-sectional 
CAMEB (Cohort of Asian and matched European bronchiectasis) 
study8. Patients had a median age of 68 years (range, 60–74 years) 
and were equally distributed according to sex (Supplementary  
Table 1). Most had idiopathic or post-infectious (non-mycobacterial) 
bronchiectasis and were classified as having moderate to severe  
disease using a validated scoring system (median bronchiectasis 
severity index (BSI), 9; interquartile range (IQR), 6–13). Patients 
were recruited in Asia (Singapore and Kuala Lumpur, Malaysia)  
and Europe (Dundee, Scotland, UK). For inclusion, patients had 
confirmed radiological bronchiectasis on high-resolution com-
puted tomography (HRCT) and were recruited during outpatient 
attendance when clinically stable.

Having previously characterized the fungal mycobiome in the 
CAMEB cohort8, we generated accompanying bacterial and viral 
microbiome profiles for all of the patients to assess a more holistic 
microbiome in each individual (Extended Data Fig. 1). Individual 
analysis of the bacterial microbiome revealed three patient clus-
ters (Extended Data Fig. 1a), characterized by predominance of 
Pseudomonas, Streptococcus or Haemophilus (Extended Data Fig. 1b). 
Of the three clusters, the Pseudomonas- and Haemophilus-dominant 
clusters had lower α-diversity and a more positive correlation with 
clinical features such as exacerbation (Extended Data Fig. 1c–g), 
which was most apparent in the Pseudomonas-dominant cluster. 
A 17-virus panel targeting respiratory viruses was also assessed in 
all of the patients, which showed a significantly higher airway viral 
load in bronchiectasis than in the healthy airway (Extended Data 
Fig. 1h and Supplementary Table 2). Human parainfluenza virus 3  
was most prevalent (57%), with higher occurrence in patients of 
Asian than European origin (79% versus 39%, P < 0.001). Other 
viruses detected at lower frequency include rhinovirus, bocavirus, 
human parainfluenza virus 2, human parainfluenza virus 4, influ-
enza A, influenza B, respiratory syncytial virus A, metapneumo-
virus, human coronavirus 229E and enterovirus (Extended Data  
Fig. 1i), none of which was associated with any clinical outcomes 
(data not shown).

Bacterial and viral community profiles were integrated with 
existing mycobiome data8 by implementing a weighted similarity 
network fusion (WSNF) approach, which assumes differential influ-
ences of each biome on the overall multi-biome based on individual 
taxonomic composition and richness (Fig. 1a,b and Extended Data 
Fig. 2). Weighting was assigned according to the total number of 
observed taxa present in a particular biome, with filtering based on 
a prevalence of at least 5% across the patient cohort; that is, bac-
teriome (62 genera) > mycobiome (52 genera) > virome (four viral 
species) observed across 217 patients. Based on these observation-
ally stable inter-kingdom taxa (n = 118), assigned weights of 53% 
(62 of 118) for bacteria, 44% for fungi (52 of 118) and 3% for viruses 
(4 of 118) were applied in the network fusion, consistent with the 
breadth of information content underlying each network (Fig. 1b).  
Spectral clustering of the resultant similarity matrix identified 
two patient clusters (Fig. 1c), with a mean misclassification ratio 
(based on 100 bootstrap iterations) of 12.4%, indicating a cluster 
robustness of 87.6%. The WSNF method used here is freely avail-
able as an online webtool (https://integrative-microbiomics.ntu.
edu.sg; Methods). Each cluster contains a range of discriminant 
bacterial, fungal and viral taxa, which highlights the potential for 
interactions in the observed clinical states (Fig. 1d). Patients from 
the larger cluster (cluster 1, n = 134) had greater microbial diver-
sity (Fig. 1e) and had better clinical outcomes than those in the 
smaller cluster (cluster 2, n = 83) in terms of exacerbation frequency 
and symptoms (Fig. 1f,g). Additional geographic and clinical dif-
ferences between the two clusters include a higher proportion of 
European patients in the frequent exacerbations cluster (82% versus 
22%, P < 0.001), with patients in that cluster also having a higher 
body mass index (20–31 kg m−2 versus 18–24 kg m−2, P < 0.001), a 

higher prevalence of chronic rhinosinusitis (CRS) (36% versus 18%, 
P < 0.001), greater inhaled corticosteroid (ICS) use (50% versus 
26%, P < 0.001) and a greater likelihood of a smoking history (41% 
versus 22%, P < 0.005). Although the prevalence of CRS was higher 
in cluster 2 than in cluster 1, it was not associated with the presence 
of sinus disease-associated taxa (Extended Data Fig. 3a,b), which 
suggests that the sampling methodologies were robust with regard 
to these potential confounding variables14. The association of ICS 
and antibiotic use on microbiome composition was not statistically 
significant (Extended Data Fig. 3c–e). Patients in cluster 2 carried 
a relative risk of 2.4 (95% confidence interval, 1.6–3.5, P < 0.0001) 
for the ‘frequent exacerbator’ phenotype, defined as ≥3 exacerba-
tions annually1. Although lung function and disease severity were 
similar between the clusters (Fig. 1h,i), integrated multi-biome 
analysis enabled clinically meaningful patient stratification in that 
the high-frequency exacerbators were able to be identified with 
greater precision when compared with use of the bacterial microbi-
ome alone (Supplementary Table 3), a demonstration of the clinical 
utility of the integrative process. In contrast to existing bronchiecta-
sis paradigms15, the high-frequency exacerbation cluster had lower 
prevalence (31% versus 66%, P > 0.001) and relative abundance 
(10.8% versus 1.7%, P > 0.001) of Pseudomonas species compared 
with the low-frequency exacerbation cluster.

Co-occurrence analyses of the interactome in low- and 
high-frequency exacerbation clusters. To characterize micro-
bial interactions (the interactome) within each cluster, weighted 
co-occurrence analysis with an ensemble of similarity measures 
and regression techniques was used to generate microbial asso-
ciation networks (Fig. 2a,b). Leveraging the methodology of Faust 
et al.16 mitigated compositionality of relative abundance data and 
provided a framework (based on graph theory) in which microbes 
(described as nodes) can be assessed in the context of their inter-
connection with (predicted) interacting partners (edges), which 
can be positively or negatively correlated (see Methods). Therefore, 
a positive interaction between microbes is defined by the consen-
sus ensemble correlative score, whereby a positive value represents 
the co-occurrence of microbes and a negative value represents 
co-exclusion. The low-frequency exacerbation cluster had a higher 
total number of microbes and microbial interactions than the 
high-frequency exacerbation cluster, which exhibited lower diver-
sity and a greater proportion of negative interactions between 
constituent microbes (Fig. 2c). An altered interactome is therefore 
evident in the high-frequency exacerbation cluster, suggestive of 
opposing microbial interactions that potentially drive this observed 
clinical state (Fig. 2d,e).

Busy, critical and influential microbes in the interactome. 
Adopting network-based approaches permits assessment of alter-
nate metrics to characterize microbiomes for potential clinical 
applicability17. We evaluated the network metrics node degree, 
stress centrality and betweenness centrality (of the nodes) to 
describe microbes in a network that we refer to as busy (microbes 
with an increased number of direct interactions with other 
microbes), critical (key microbes to maintain network integrity) 
and influential (microbes influencing other microbes in a net-
work, including indirectly). Using this approach, we identified key 
taxa of clinical relevance and potential targets for antimicrobial 
intervention in the clusters (Fig. 3a,b). Using these metrics, a dif-
ferent view of the cluster-specific interactome is appreciated, with 
Rothia, Streptococcus, Candida, Actinomyces and Haemophilus rep-
resenting the highest ranked taxa in the low-frequency exacerba-
tion cluster. Of these taxa, only Haemophilus is similarly ranked in 
the high-frequency exacerbation cluster, alongside Cryptococcus, 
Leptotrichia, Poryphyromonas, Prevotella and Veillonella (Fig. 3b and 
Supplementary Table 4). Although some of the top taxa identified  
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Fig. 1 | Integration of multi-biome data through WSNF. Overview of the integrative microbiomics strategy for analysis of bacteriome, mycobiome and virome 
datasets by WSNF. a, Heatmap illustrating the relative abundance of key taxa within bacterial, fungal and viral communities. Collectively, these datasets 
represent the airway multi-biome of patients with stable bronchiectasis (n = 217). b, Schematic comparison of conventional (unweighted) and weighted SNF 
approaches to assess the airway multi-biome. Weighting is assigned to each biome dataset based on taxonomic richness. WSNF reflects the in vivo state 
and overcomes the weaknesses of conventional SNF methodologies. c, Heatmap illustrating pairwise patient WSNF similarity scores stratified by spectral 
clustering. d, Linear discriminant analysis effect size (LEfSe) analysis of observed clusters illustrating discriminant taxa. Prefixes indicate whether taxa are 
bacterial (B), fungal (F) or viral (V). e–i, Comparison of α-diversity (as Shannon diversity index, P = 1.9 × 10−6) (e) and clinical features such as number of 
exacerbations in the preceding year (P = 2.5 × 10−5) (f), breathlessness (mMRC) score (P = 6.3 × 10−6) (g), lung function (as FEV1 % predicted) (h) and BSI (i) 
between the two identified patient clusters (cluster 1, n = 134; cluster 2, n = 83) according to integrated multi-biome profiles, derived from n = 217 biologically 
independent samples. Box plots reflect median and IQRs, with whiskers bounding non-outlier values. NS, not significant; ***P < 0.001 (Mann–Whitney U-test).
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in each respective cluster commonly share the busy, influential 
and critical network characteristics (for example, Streptococcus, 
Haemophilus, Candida and Cryptococcus), all exhibit markedly dif-
ferent interaction networks when assessed independently within 
their respective clusters, where they also exhibit variable prevalence 
(Extended Data Fig. 4). This suggests that a microbe’s interactome, 
rather than the microbe itself, dictates clinical status such as the 
risk of exacerbations. Accordingly, classification based on the inter-
actome provides superior resolution to that provided by a single 
microbe (for example, Pseudomonas spp.) in the identification of 
patient populations at risk of adverse clinical outcomes. Conversely, 
when interaction networks were assessed in a supervised manner 
according to documented exacerbation frequency (<3 versus ≥3), 
as opposed to WSNF, the observed network configurations were 
similar but with the notable appearance of Pseudomonas spp. in the 
top taxa of frequent exacerbators (Extended Data Fig. 5).

Given that Pseudomonas spp. detected on culture is strongly 
associated with exacerbations in bronchiectasis15,18, we next spe-
cifically assessed Pseudomonas-interaction networks (Fig. 3c,d). 
Pseudomonas spp. exhibits distinct interactomes based on a patient’s 
exacerbation frequency, and although an overall trend toward more 
negative interactions was observed for the high-frequency exacer-
bation cluster (Fig. 2c–e), the Pseudomonas-interaction network in 
that cluster had a higher number of positive interactions compared 
with that in the low-frequency exacerbation cluster (Fig. 3c,d). The 
Pseudomonas-interaction network in the low-frequency exacer-
bation cluster had a greater number of negative interactions than 
that in the high-frequency cluster (n = 19 versus n = 5, Fig. 3d). 
Several important differences in Pseudomonas-interaction networks 
between clusters were evident, one of which was that Pseudomonas 
exerts a greater negative influence on Haemophilus and a lesser 
negative influence on Streptococcus in the high-frequency exacer-
bation cluster when compared with the low-frequency exacerba-
tion cluster. Additionally, inverse relationships were observed in 
relation to Aspergillus, Prevotella, Veillonella, Neisseria and human 
parainfluenza virus 3 between clusters, in that positive interactions 
predominate in the high-frequency exacerbation cluster and nega-
tive interactions in the low-frequency exacerbation cluster (Fig. 3d). 
Therefore, Pseudomonas spp. presence alone does not adequately 
explain the published links between this microorganism and bron-
chiectasis exacerbations.

Network analysis of the interactome over the course of a bron-
chiectasis exacerbation. Interactomes differ based on exacer-
bation frequency, therefore we next evaluated the interactome 
prospectively across the course of exacerbations in an indepen-
dent bronchiectasis cohort recruited from two hospitals in the 
east of Scotland. Patients had a median age of 72 years (range, 
68–74 years) and were predominantly female (65%). Most had 
idiopathic bronchiectasis (65%) and were classified as having 
moderate to severe disease (median BSI, 10; IQR, 6–14) (Methods 
and Supplementary Table 5). We assessed bacterial, fungal and 
viral microbiome profiles generated for these 17 patients across 
three timepoints (total, 153 biomes), and generated interactome 

networks at baseline (before exacerbation), during exacerba-
tion and after exacerbation (after 2 weeks of antibiotic therapy). 
Longitudinal analysis indicated a broad similarity of multi-biome 
signatures, with no significant differences observed in microbial 
composition or in α- and β-diversity, suggesting the overall stabil-
ity of the microbiome across exacerbation and recovery (Fig. 4a–c 
and Extended Data Fig. 6). By contrast, co-occurrence analysis 
highlighted major changes in interactomes, with an increase in 
the number and strength of negative interactions during exacerba-
tions compared with baseline (before exacerbation) or following 
treatment (after exacerbation) (Fig. 4d–f). Detailed comparison 
of changes from baseline to exacerbation and from exacerbation 
to post-exacerbation status illustrates dynamic shifts towards a 
new post-exacerbation network (Fig. 4g). Fewer interactions are 
observed during and after exacerbation compared with base-
line, which is probably explained by broad-spectrum antibiotic 
usage (which eliminates potentially interacting microorganisms), 
with the greatest overlap observed between exacerbation and 
post-exacerbation states (Fig. 5a). Importantly, a core interactome 
of 64 conserved microbial interactions exists, with the strongest 
interactions noted between Prevotella, Leptotrichia and Veillonella 
(Fig. 5b). To further assess microbial interactions related spe-
cifically to the exacerbation state, differential network analysis 
was implemented, which illustrates core and ancillary networks  
(Fig. 5b). The core network remains unaltered by exacerbation or 
therapy and includes key bacteria such as Streptococcus, Prevotella, 
Veillonella, Neisseria, Leptotrichia and Rothia. Conserved fun-
gal and viral interactions involve Cryptococcus and rhinovirus, 
respectively. The interactions most susceptible to variability with 
exacerbation, and therefore treatment (ancillary network), involve 
more established respiratory pathogens such as Pseudomonas, 
Haemophilus, Stenotrophomonas, Moraxella and Staphylococcus, 
but also Saccharomyces, Candida (fungi), influenza virus B and 
metapneumovirus (viruses) (Fig. 5b).

We next considered the potential effects of antibiotic exposure 
on interactome network dynamics by comparing observed and 
simulated responses. In the longitudinal study arm, patient therapy 
was guided by culture-based microbiology, which was generally 
consistent with our derived 16S ribosomal RNA analysis (Extended 
Data Fig. 7a). This approach resulted in several patients in the lon-
gitudinal study (n = 12) receiving β-lactam antibiotics for treatment 
of their initial exacerbation (Supplementary Table 6). We used the 
baseline (pre-β-lactam exposure) interactome network (Fig. 5c) to 
predict network reconfiguration after β-lactam treatment by arti-
ficially reducing the abundance of β-lactam-sensitive microbes by 
75% (Fig. 5d; Methods). We then compared the simulated network 
to that observed in the β-lactam-treated patients following therapy 
(Fig. 5e). Our network-based prediction had reliable similarity to 
the network observed for β-lactam-treated patients with respect to 
several microbial nodes. The rank order difference in key microbial 
taxa after antibiotic treatment was correctly predicted for 10 out of 
13 taxa in the simulation model, further underscoring the clinical 
relevance and translatability of interactome analysis (Fig. 5c–e and 
Supplementary Table 7). Finally, as a prognostic indicator, we also 

Fig. 3 | Network characterization of busy, critical and influential microbes (nodes) in patients with frequent exacerbations. a,b, Network visualization of 
key taxa in low (a) and high (b) exacerbation frequency clusters. Colored circles represent microbes and gray lines represent their associated interactions. 
Circle size (degree) reflects the number of direct interactions for a given microbe (termed ‘busy’). Circle border thickness represents calculated stress 
centrality for each microbe (termed ‘critical’), while color depth reflects the betweenness centrality (the ‘influence’) of the microbe in the network. Bacterial 
(Streptococcus and Haemophilus) and fungal (Candida and Cryptococcus) genera exhibiting high calculated network metrics (in both clusters) are indicated 
by a red border. c, Microbial network graphs in low and high exacerbation frequency clusters centering on the Pseudomonas node. Microbes not interacting 
directly with Pseudomonas (that is, not part of the Pseudomonas-interaction network) are colored according to their respective cluster. Microbes directly 
interacting with Pseudomonas are colored to reflect positive (green) or negative (red) interactions. Color depth reflects the strength of interaction (edge 
weight). d, Co-occurrence analysis highlighting the Pseudomonas-interaction network in low and high exacerbation frequency clusters. Taxa shown in black 
represent contrasting interactions between clusters; taxa shown in gray demonstrate no change to the directionality of their interaction between clusters.
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found that interactions rather than individual microbial abundance 
served as a better predictor of time to next exacerbation in patients 
in the longitudinal arm of the study (Extended Data Fig. 7b–h).

Shotgun metagenomic analysis of function and microbial inter-
action in bronchiectasis. To assess function in identified clusters, 
we performed metagenomic sequencing on a subset of 20 patients 
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from each cluster (total, n = 40; Supplementary Table 8). The linear 
discriminant analysis score showed that several genes were signifi-
cantly enriched in the high exacerbation frequency (HEF) cluster, 

highlighting potential genetic components related to exacerba-
tion phenotypes and to observed differences in the correspond-
ing microbial interactome (Fig. 6a). Functional mapping of these 
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Fig. 4 | Longitudinal analysis of the bronchiectasis multi-biome during exacerbations. a, Longitudinal analysis of bacterial, fungal and viral community status 
in n = 17 bronchiectasis patients at the baseline (pre-exacerbation), exacerbation (during an established pulmonary exacerbation) and post-exacerbation 
(after completion of antibiotic therapy) timepoints. Pie charts illustrate aggregate microbial composition of the bacterial, fungal and viral community profiles 
across each timepoint. b, Boxplots of α-diversity (as Shannon diversity index) across the three timepoints. Plots reflect median and IQRs with whiskers 
bounding non-outlier values of the distribution. Dotted lines identify longitudinal samples from individual patients (n = 17). NS, not significant (Mann–
Whitney U-test). c, Non-metric multi-dimensional scaling (NMDS) plot illustrating similar multi-biome β-diversity across the three timepoints. Samples are 
grouped according to their respective longitudinal timepoint, as indicated by colored planes. d–f, Visualization of the interactome’s positive and negative 
interactions between the most abundant taxa at baseline (d), during exacerbation (e) and at the post-exacerbation stage (f). g, Plots of relative interaction 
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genes identified several microbial virulence-related pathways 
enriched in the high-frequency exacerbation cluster, including 
functional categories related to quorum sensing, biofilm formation 
and antibiotic resistance (Fig. 6b). Based on these initial findings, 
we performed further metagenomic analysis on an independently 
recruited bronchiectasis cohort from four jurisdictions (n = 166; 
Singapore, Malaysia, Scotland and Italy) (Supplementary Table 9). 
That analysis independently identified two patient clusters based 
on assessment of gene function, again distinguished by the over-
representation of microbial virulence functions including chemo-
taxis, two-component systems, secretion systems and siderophore 
production pathways coincident with HEF (Fig. 6c–e). Patient clus-
ters had significant differences in lung function (forced expiratory 
volume in 1 second (FEV1) % predicted, P = 0.035), while disease 
severity (BSI) and symptoms (modified Medical Research Council 
(mMRC) scores) were similar (Fig. 6f and Extended Data Fig. 8).

We next taxonomically assigned all of the reads and recapitu-
lated the multi-biome based on metagenomic data, thus enabling 

comparison with prior analyses derived from targeted amplicon 
sequencing, and validation of the observed interactomes (Figs. 2 
and 3). We performed analysis of the virome (including bacterio-
phages) to generate a rich viral profile (Extended Data Fig. 9). This 
revealed broadly similar bacteriophage profiles across geographi-
cally distinct cohorts, with a predominance of viruses from the fam-
ilies Siphoviridae, Caudovirales, Myoviridae and Phycodnaviridae, 
accounting for >70% of identified viral sequences (Extended Data 
Fig. 9b). Microbiome integration was then achieved with WSNF by 
applying weights in accordance with taxonomic richness as follows: 
bacteriome (992 genera) > virome (703 viral contigs) > mycobiome 
(16 genera) (Fig. 6g–j). Implementation of integrative microbiomics 
resulted in stratification of patients into two clusters separated by 
exacerbation risk, but in this case with even greater precision than in 
the initial functional analysis (Fig. 6j and Supplementary Table 10). 
In addition to a greater frequency of exacerbations (similarly to the 
earlier HEF cluster), patients in the metagenomic higher risk clus-
ter, spectral WSNF cluster 2(SC2), had significantly reduced lung  
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function (78% versus 72% predicted FEV1; P = 0.0179), while symp-
toms (mMRC score) and disease severity (BSI) were similar between 
the clusters (SC1 versus SC2). Patients from the SC2 (high exacerba-

tion) cluster also had distinct bacteriophage profiles, with noticeable 
decreases in the relative abundance of Siphoviridae, Caudovirales 
and Myoviridae, and increases in Picornaviridae, Polydnaviridae 
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and Herpesviridae (Extended Data Fig. 9b–d). BLAST (Basic 
Local Alignment Search Tool) analysis enabled the assignment of 
approximately 60% of contigs, and revealed increased abundance 
of specific bacteriophage sequences related to the Dickeya phage, 
the Pseudomonas bacteriophage Pf1 and the Streptococcus phages 
Javan367, phiARI0131-1/phiARI0131-2, Javan116 and Javan 536 
(Extended Data Fig. 9e). Although an increased prevalence of CRS 
was identified and assessed in our initial analysis (Extended Data 
Fig. 3), this was not replicated in metagenomic analysis (26.9% ver-
sus 36.2%, P = 0.557). Metagenomic validation did not detect signif-
icant differences in ICS use between clusters (43.3% versus 40.6%, 
P = 0.850) or in antibiotic therapy (52.6% versus 62.3%, P = 0.058). 
Antimicrobial resistance genes were increased in abundance in the 
SC2 cluster, coincident with the observed altered bacteriophage 
profiles (Extended Data Fig. 9f). The key difference between clus-
ters (that is, exacerbation frequency) remained consistent even 
when alternate sequencing approaches were used, representing a 
strong validation of the clinical relevance and reproducibility of 
interactomes and their associated microbial networks (Fig. 6k–m).

Co-occurrence analysis of the high-risk cluster defined on metage-
nomic sequencing identifies interaction networks and keystone taxa 
including bacteriophages, which themselves exhibit a marked shift 
in phage profile between clusters (Extended Data Fig. 9a–e). Clear 
differences in overall network configuration are observed between 
the low-exacerbation (SC1) and high-exacerbation (SC2) clusters, 
consistent with prior targeted amplicon sequencing analysis, while 
metagenomics also indicates an increased abundance of antimi-
crobial resistance determinants in the SC2 cluster (Fig. 6k–m and 
Extended Data Fig. 9f).

The derivation of network configurations from two indepen-
dent bronchiectasis cohorts, using two sequencing approaches, 
facilitated direct comparison between the interactomes generated 
by each method, with regard to the high exacerbation risk clusters 
(that is, HEF versus SC2) (Fig. 6m). Direct comparison between 
microbes detected in both approaches indicated that 89.9% of inter-
actions (that is, 267 interactions between 18 microbes) were com-
mon between the HEF and SC2 clusters, which strongly validates 
the associations of these networks with clinical exacerbation risk 
and confirms the overall importance and clinical relevance of inter-
actome analysis.

Discussion
Here we present a multi-biome framework that uses integrative 
microbiomics to assess bacterial, viral and fungal communities in 
individual patients to reveal features of the microbiome, the find-
ings of which have implications for the use of antibiotics in clinical 
practice.

Infection is central to bronchiectasis pathogenesis and is based 
upon conceptual frameworks such as the ‘vicious cycle’ and ‘vicious 
vortex’2,3. Targeting bacteria with antibiotics reduces bacterial 
load, the accompanying inflammation and therefore exacerba-
tion risk, which in turn alleviates symptoms and improves clini-
cal outcomes19,20. However, the role of coexisting, even commensal 
or pathobiont microorganisms, is not considered in this model. 
Furthermore, this model fails to explain improved outcomes in 
those receiving antibiotics not necessarily targeting their dominant 
pathogen, exemplified by macrolide use in Pseudomonas infec-
tion21. Patients receiving amoxicillin or a macrolide in the presence 
of Pseudomonas improve, and this is thought to be due to the drug’s 
anti-inflammatory properties or the presence of co-infection22. 
Here interactomes provide an alternative conceptual framework to 
better understand antibiotic use and the treatment of exacerbations 
in bronchiectasis. This is supported by our longitudinal analysis in 
which prescribed antibiotics both influence the interactome and con-
fer clinical benefit. Therefore, modulation of Pseudomonas-related 
interactions, instead of directly targeting the organism itself, might 

restrict its pathogenic potential, and explains the observed improved 
clinical outcomes. Additionally, the observed clinical benefit gained 
by the use of antibiotics to which a target organism may be resistant 
(as established in cystic fibrosis) is potentially also explained by the 
influence of antibiotics on the interactome, in that the effects on 
susceptible microorganisms within the interaction network of the 
target pathogen indirectly modulate its virulence23. The reported 
absence of detectable change in respiratory microbiomes during 
bronchiectasis exacerbations, even following antibiotics, further 
suggests that microbial abundance alone provides an incomplete 
view of airway microbial ecology10,24. Our validation cohort, includ-
ing the metagenomic survey of bacteriophages, uncovered a striking 
change in bacteriophage profiles between the clinical exacerba-
tion clusters. A higher burden of antimicrobial resistance genes, 
coincident with altered bacteriophage abundance, was observed 
despite an absence of significant difference in antimicrobial therapy 
between clusters. Data on the relationships between the resident 
airway microbes and the increased bacterial load during exacerba-
tions, and on the mechanisms driving the evolution from stability to 
exacerbation, are lacking, and an improved understanding of inter-
actomes (including bacteriophages) will provide key insights into 
the in vivo state.

The value of data integration with SNF for multi-dimensional 
datasets in transcriptomics, proteomics and metabolomics has been 
demonstrated in airway diseases such as chronic obstructive pul-
monary disease (COPD)25, but these methods have not been previ-
ously applied to microbiome integration. Conventional SNF is not 
optimized for biological systems such as multi-kingdom microbi-
omes, in which dynamism and potential dominance of one king-
dom over the others need to be considered. Using a WSNF approach 
based on richness, we have demonstrated improved patient stratifi-
cation in bronchiectasis by identifying high-frequency exacerbators 
with an accuracy exceeding that obtained using a single microbial 
group. The methods described here have been made accessible 
to the research community through our online webtool (https://
integrative-microbiomics.ntu.edu.sg).

Traditionally, exacerbations are considered to occur when an 
increased bacterial load or acquisition of a new virus ensues, however 
analysis of a single microbial group by bacterial abundance or viral 
polymerase chain reaction (PCR) has been shown to be inadequate 
to discriminate between the stable and exacerbation states in bron-
chiectasis9,10. Interactome analysis goes deeper by identifying chang-
ing inter-kingdom interactions during an exacerbation. Despite 
identifying clinically relevant patient clusters tied to exacerbation 
frequency, key bronchiectasis pathogens, including Pseudomonas 
and Aspergillus8,26, were detectable in the low-frequency exacerbator 
group, suggesting that reliance on detecting the presence or abun-
dance of a particular organism alone is sub-optimal for predicting 
exacerbation risk. To better understand this, we used network anal-
ysis, which provides insights into the overall community dynamics 
rather than the occurrence or abundance alone16,17. The application 
of this approach to the airway microbiome demonstrates that bron-
chiectasis patients at highest risk of exacerbations have an inter-
actome dominated by antagonistic interaction between microbial 
kingdoms, explaining their lower α-diversity, in which microbes 
compete rather than cooperate with one another.

Assessment of the interactome as a network of busy, criti-
cal and influential microorganisms in an airway ecosystem high-
lights the relevance of established bronchiectasis pathogens such as 
Haemophilus. However, particularly in the high-frequency exacer-
bation cluster, relationships with other bacteria such as anaerobes 
(Prevotella and Veillonella) or with other kingdoms such as fungi 
(Cryptococcus) are novel and are previously unrecognized in bron-
chiectasis. The uncovered relationship to anaerobes is particularly 
interesting given that anaerobes are detected at high frequencies 
in the cystic fibrosis airway, with conflicting results in attempts to 
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link them with disease outcomes or exacerbations27,28. However, 
Veillonella has been associated with bronchiectasis exacerbations in 
the BLESS cohort7. Key pathogenic taxa such as Pseudomonas, with 
established links to bronchiectasis exacerbations, demonstrate con-
trasting interactomes between the low- and high-frequency exac-
erbators and confirm the relevance of integrative microbiomics in 
precision microbiology.

To further validate our findings, we assessed the time course of 
the interactome in a prospective longitudinal bronchiectasis cohort 
experiencing exacerbations. This first confirmed the findings of 
prior microbiome studies in bronchiectasis, which indicated the 
stability of the microbiome through the course of the exacerbation, 
and then, following treatment, little change in microbial composi-
tion, α- or β-diversity5,10. However, we detected a changed interac-
tome, unassessed in prior studies5,10, which did not use integrative 
approaches. A clear shift toward antagonistic microbial relationships 
during exacerbation was evident, similar to that observed in our 
high-frequency exacerbation cluster, a finding unexplained by lin-
ear increases in pathogen dominance as reflected by similar diversity 
indices. These findings, further validated by the core and ancillary 
interactomes observed during exacerbation, underscore the advan-
tages conferred by network analysis, which reveals relationships that 
are undetectable by microbial abundance or identity assessment 
alone. Our approach highlights the relevance of inter-kingdom 
interactomes that vary during exacerbations and which offer deeper 
insight into potential triggers of microbial virulence. The interac-
tome provides new and previously unrecognized targets for antimi-
crobial therapy that could be considered as an alternative to, or used 
in combination with, established regimens to increase efficacy. We 
demonstrate and confirm that simulated microbial networks can 
be reconfigured in response to antibiotic therapy, highlighting the 
clinical potential and applicability of the interactome approach as a 
model for the prediction of therapy-induced microbial dynamics. 
The benefits of targeting busy, critical or influential microbes in an 
interactome, however, remain unknown and unaddressed by this 
work, and should be the focus of future studies.

Our study demonstrates an integrative microbiomics approach 
to the study of the multi-biome in chronic airway disease, however, 
it has some limitations. First, the patients were recruited from the 
established CAMEB cohort, which by design is cross-sectional, 
hence we use largely static data to predict dynamic interaction8,12. 
This is partially overcome by the inclusion of a longitudinal cohort 
in our analysis, to better assess the temporal dynamics in rela-
tion to exacerbation and antibiotic treatment. Next, although 16S 
methodologies are well-established, there are inherent limitations, 
including the underrepresentation of mycobacteria, an important 
group of organisms in bronchiectasis29. The European arm of the 
CAMEB cohort was wholly recruited from Scotland, and therefore 
may not fully capture the diversity in the European subcontinent. 
Additionally, fungal internal transcribed spacer (ITS) sequencing 
approaches are challenged by the underdevelopment of available 
reference databases30. Our initial virome analysis, although broad, 
comprehensive and informed by established literature, targets a 
known virus panel and therefore is subject to bias. We attempted to 
overcome this, at least partially, through the use of a metagenom-
ics validation approach with the inclusion of bacteriophage analy-
sis. Future work and alternative approaches to the assessment of 
viromes, such as RNA sequencing, may yield different results and 
be more comprehensive, thereby enabling greater weighting of the 
viral contribution to the overall integrated microbiome, an impor-
tant area of future exploration given the relatively poorly defined 
role of viruses in bronchiectasis. Only young healthy controls 
recruited from Asian countries were evaluated in our comparison 
of viral loads with bronchiectasis, and, additional older controls, in 
the age groups afflicted by bronchiectasis may have been of value. 
Furthermore, although networks were weighted based on species 

richness, their true influence on the microbiome is not necessarily 
captured by richness alone, but is instead a function of functional 
genes, competition, substrate utilization and energy flux through 
the ecosystem, traits that cannot be comprehensively assessed by 
sequencing alone. Although metagenomics potentially represents a 
less biased alternative approach, which we have used as the valida-
tion procedure, it may itself underestimate fungal presence given 
the technical challenges associated with mycobiome evaluation 
and the relatively higher airway bacterial burden, which together 
potentially obscure the influence that fungi may have on the inter-
actome. Furthermore, we acknowledge that sputum is an imperfect 
matrix, and make no inference about lower airway ecology, noting 
only the clinical associations between sputum as a surrogate, read-
ily obtainable, non-invasive sample that is intermediate between the 
upper and lower airway. Finally, although observational data sug-
gest a potential causal association, other factors may drive observed 
effects. Observed interactions may represent epiphenomena of a 
selectively operating immune system, for example, and our work 
did not include any assessment of host responses; this is another 
avenue for future work.

The airway microbiome and its accompanying interactome are 
likely to be critical predictors of antibiotic treatment response, and 
to provide a theoretical basis for understanding several phenomena 
associated with antibiotics that remain unexplained. Manipulation of 
microbiomes by means other than antibiotics is being explored31,32, 
and the effect of probiotics and manipulation of the host response on 
the interactome should be considered. Holistic analytical approaches 
that reflect the in vivo state, which go beyond microbial identity 
alone, and which consider the complexity of the inter-kingdom inter-
actions demonstrated by integrative microbiomics, may improve 
patient stratification, clinical trial design and the therapeutic out-
comes in bronchiectasis and other respiratory diseases.
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Methods
Study population. Patients with stable bronchiectasis were recruited as part of the 
CAMEB study8. Recruitment was carried out at three sites in Singapore (Singapore 
General Hospital, Changi General Hospital and Tan Tock Seng Hospital) and 
one Malaysian site (UKM Medical Centre, Kuala Lumpur), while an age-, sex- 
and disease severity-matched group (based on BSI) was recruited from a single 
European site (Ninewells Hospital, Dundee, UK) to control for confounding factors 
across different geographic locations8,33. At screening, patients for inclusion had 
confi med radiological bronchiectasis on HRCT. Patients were recruited during 
outpatient attendance and were clinically stable, which was defi ed as the absence 
of new symptoms and no change to bronchiectasis therapy in the preceding 
4 weeks. Patients were excluded if they had a concurrent major respiratory 
disease as their primary diagnosis (asthma or COPD)34,35, were pregnant or 
breastfeeding, had active mycobacterial disease or were on chemotherapy. 
Patients with active infection (necessitating acute use of antibiotics) or who were 
taking systemic corticosteroids in the 4 weeks preceding recruitment were also 
excluded. Exacerbations in the preceding year were defi ed in accordance with 
established consensus36. To study changes to the integrated microbiome during 
exacerbations and after antibiotic treatment, a cohort of patients was recruited 
from two hospitals in the east of Scotland (2016–2017). Patients were enrolled 
during clinical stability using the inclusion criteria described above and were 
asked to provide a spontaneous sputum sample at baseline, with repeat sputum 
sampling performed at the onset of exacerbation (≤24 hours after commencing 
antibiotic therapy), and after 14 days of antibiotic treatment. Th s fi al sample was 
taken following cessation of antibiotic treatment on day 14 once clinical recovery 
had been achieved. The presence of an exacerbation was defi ed in accordance 
with established consensus36. Thi ty controls, with no active or past history of 
respiratory or other medical disease and normal spirometry, were recruited in 
Singapore. These individuals were recruited as community volunteers through 
Nanyang Technological University, Singapore. Patient demographics are listed 
in Supplementary Tables 1 and 5. The study was approved by the institutional 
review boards (IRBs) of all of the participating institutes, and all of the patients 
gave written informed consent. For metagenomic analysis and validation, an 
independent cohort of 166 bronchiectasis patients was recruited from clinical 
sites described above in Singapore (n = 43), Malaysia (n = 25) and the UK (n = 76). 
Additional patients were recruited from a fourth site, in Milan, Italy (n = 22), 
through the Bronchiectasis Program, Foundazione IRCCS Ca’ Granda Ospedale 
Maggiore Policlinico, Milan. Relevant clinical characteristics, bronchiectasis 
etiology and patient demographics of the cross-sectional, longitudinal and 
metagenomic study cohorts can be found in Supplementary Tables 1, 5, 8 and 9.

Ethics approval. The study was approved by the IRBs of all of the participating 
institutes as follows: CIRB 2016/2073 mutually recognized by DSRB, NTU IRB-
2016-01-031, NTU IRB-2017-07-023, NTU IRB-2017-12-010 (Singapore); UMMC 
2018725-6524 (Malaysia); NHD 12/ES/0059, NHD 16/NW/0101 (Dundee, 
Scotland) and 255_2020 (Comitato Etico Milano Area 2, Milan, Italy). All of the 
patients gave written informed consent to participate.

Clinical data and specimen collection. Sputum was obtained from each 
participant. Spontaneously expectorated representative sputum from a deep 
cough with the assistance of a chest physiotherapist or induction protocol 
(when appropriate) was collected into sterile containers and transported (on ice) 
for evaluation37. An equal volume of Sputasol (Thermo Fisher Scientific) was 
added to each sample and shaken for 15 min at 37 °C. Sputasol-homogenized 
samples were either stored (at −80 °C) or mixed with two volumes of RNAlater 
(Sigma-Aldrich) for DNA extraction and microbiome analysis8,38. All of the 
specimens from clinical sites were transported promptly (within 4 h), appropriately 
(temperature-controlled) and processed centrally at a single site to ensure 
consistency and standardization of all experimental work. Samples from the 
three Singaporean hospitals were transported on ice by courier to the Nanyang 
Technological University (≤4 h after collection). To ensure quality control of 
materials transported from sites outside Singapore, specimens were shipped 
on dry ice in temperature-controlled containers and their integrity checked on 
arrival before use. All of the DNA extraction experiments were performed at 
Nanyang Technological University, Singapore, using a single standardized protocol 
(described in further detail below).

Sputum DNA and RNA extraction. Sputum DNA was extracted from a 250 mg 
sample using methods previously described38. In brief, sputum samples in 
RNAlater were centrifuged at 8,000g for 10 min and resultant pellets resuspended 
in 500 µl sterile PBS (GE Lifesciences) and transferred to sterile bead mill 
tubes (VWR) containing 1 mm sterile glass beads (Sigma-Aldrich). Next, 
homogenization was carried out using a bead mill homogenizer (VWR) with 
three rounds of bead beating at top speed (setting 6) for 30 s periods, with cooling 
on ice in between rounds, and DNA was purified using the Roche High-pure 
PCR Template Preparation Kit according to the manufacturer’s instructions. For 
RNA extraction, sputum was subjected to mechanical lysis by bead beating in 
PowerBead garnet bead tubes (0.7 mm, Qiagen) using a bead mill homogenizer 
(VWR) as described above. Total RNA was then purified using the RNeasy Mini 

Kit (Qiagen), with immediate conversion to complementary DNA with the iScript 
Reverse Transcription Supermix for RT-qPCR (Bio-Rad).

Analysis of the bacterial and fungal communities. For the cross-sectional arm of 
the study, targeted amplicon sequencing of the 16S rRNA gene (bacteriome) was 
carried out using a previously validated amplicon shotgun sequencing protocol 
with paired-end analysis (2 × 101 base pair reads) on an Illumina HiSeq 2500 
platform8,39. Fungal community analysis (mycobiome analysis) was performed as 
detailed for the CAMEB cohort8. For analysis of longitudinal samples, an Illumina 
MiSeq platform was used in conjunction with validated wet-lab (Illumina) and 
cloud-based analytic workflows (Basespace Labs) for both bacterial 16S and fungal 
nuclear ribosomal ITS sequences30,40. Here specific primer sequences targeting 
the hypervariable regions V3 and V4 of the 16S rRNA gene and the ITS2 region 
were targeted using specific primer sets41,42. The 16S rRNA sequences were 
mapped to an Illumina-curated version of the greengenes 16S rRNA database (16S 
Metagenomics, v1.0.1), whereas ITS sequences were aligned to v7.2 of the UNITE 
database (ITS metagenomics v1.0.0) using a high performance implementation of 
the Ribosomal Database Project (RDP) classifier43–45. Blank DNA extractions were 
performed on sterile PBS and underwent both 16S rRNA and ITS analysis to assess 
the degree of background contamination associated with DNA extraction and 
sequencing reagents. DNA concentrations obtained from blank extractions were far 
lower than for test samples (0.31 ng µl−1, IQR 0.01–0.67 ng µl−1 versus 37.6 ng µl−1, 
IQR 36.5–104.3 ng µl−1) and were pooled (n = 4) to obtained sufficient material for 
amplification and sequencing, with the sample volume of purified amplicons added 
at approximately fourfold the volume of test samples in the sequencing library pool 
to achieve sufficient sequence data. Sequenced blanks contained read counts below 
that of test samples and therefore are unlikely to have had a substantial influence 
on observed microbiome profiles. Read counts in blanks as well as their taxonomic 
assignments are given in Extended Data Fig. 10. All of the sequence data from this 
study have been uploaded to the National Center for Biotechnology Information 
(NCBI) Sequence Read Archive (SRA) under project accession PRJNA590225.

Quantitative PCR-based analysis of the viral community. Real-time quantitative 
PCR (rt-qPCR) was performed using KAPA SYBR FAST Master Mix Universal 
(Kapa Biosystems) on an Applied Biosystems StepOnePlus Real-Time PCR 
System. A 10 μl rt-qPCR reaction was performed for each well using a 96-well 
plate (Applied Biosystems) with 5 μl 2X KAPA master mix, 0.2 μl 50X ROX High, 
0.2 μl 10 μM forward primer, 0.2 μl 10 μM reverse primer, 4.2 μl water and 0.2 μl 
DNA template. Cycling conditions were as follows: 95 °C activation (20 s) followed 
by 40 cycles of 95 °C denaturation (3 s) and 60 °C annealing and extension (30 s). 
A cycle threshold < 35 was used for analysis, and viral load was quantified with 
reference to standard curves of synthetic target sequences of known concentration 
(gBlocks, Integrated DNA Technologies) for each of the 17 viral pathogens 
investigated (Supplementary Table 2). Primers used for each virus are detailed in 
Supplementary Table 11. In addition to a positive cycle threshold, fidelity of target 
amplification was assessed using melt curve analysis, and qualitative agarose gel 
electrophoresis of post-PCR amplicons was done to ensure consistent fragment size 
of positive samples.

Integration of multi-biome data by SNF. Unweighted SNF. Integration of bacterial 
and viral community data with the previously derived fungal mycobiome profiles 
of the respective participants from the CAMEB cohort was performed using SNF 
(that is, the R packages SNFtool and vegan), in an analysis involving all three 
datasets8,46,47. For each individual biome dataset, microbes prevalent in at least 5% 
of patients (that is, n ≥ 10) were considered for the integration, as follows: bacteria, 
62 genera; fungi, 54 genera; and virus, four species. A Bray–Curtis similarity matrix 
was created for each dataset using the vegan package and subsequently integrated 
into a single similarity network using the SNFtool package, with implementation 
of spectral clustering to determine assignment of the integrated network into 
distinct patient groups47. The optimal number of clusters was determined using 
the eigengap method, and the value of K nearest neighbors was set based on the 
optimal silhouette width.

Weighted SNF. The WSNF algorithm is an extension of the SNF analytical pipeline 
described above and was developed for this study (Fig. 1b). In brief, if an individual 
biome demonstrates more taxa (for example, bacteria > viruses), there is a greater 
likelihood of influence from that biome on the overall multi-biome, an issue 
unaccounted for in standard (unweighted) SNF. Therefore, bacterial and viral 
profiles, for instance, cannot be considered equal (as is the case in conventional 
unweighted SNF) because the bacterial community has greater taxonomic richness 
(and therefore greater information). It is therefore appropriate to weight each 
biome during data integration based on taxonomic richness. For this study, the 
respective weights of each biome are assigned based on the richness of the data, 
as demonstrated by the number of genera (for bacteria and fungi) or species (for 
viruses) present in each individual biome at a minimum 5% prevalence. Similarly, 
a Bray–Curtis similarity matrix was created for each biome dataset using the vegan 
package, which was subsequently integrated using the WSNF analysis pipeline46. 
The optimal number of clusters was determined using the eigengap method and 
the value of K nearest neighbors was set based on the optimal silhouette width.  
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The codebase describing the modified WSNF algorithm can be found at https://
github.com/translational-respiratory-lab/The_Interactome.

The robustness of our identified clusters was assessed using a bootstrapping 
approach, with 70% of the integrated data being sampled in 100 bootstrap 
iterations, followed by spectral clustering with k (number of clusters) = 2 (the 
optimal k value obtained using all of the data) on this 70% bootstrap sample. 
The resulting bootstrap clusters (subsamples data, 70%) were compared with the 
original clusters (100%).

Implementation of an online tool for WSNF analysis. Tool description. To 
facilitate replication of our work and enable reproducible implementation of the 
WSNF analysis, an online webtool was developed (freely accessible at https://
integrative-microbiomics.ntu.edu.sg). Given n microbiome datasets (views), the 
tool generates a corresponding patient (or sample) similarity network for each 
view based on the user-specifi d similarity measure before merging them using 
the user-specifi d algorithm. Furthermore, the tool then implements a spectral 
clustering algorithm to enable cluster analysis on the merged dataset, outputting 
the cluster assignments for each sample (or patient). The default optimum 
number of clusters is computed using ensemble-based voting for three different 
methodologies: best eigengap, rotation cost and average silhouette method. For a 
given value of k (the number of clusters), we calculate a score (or vote) using the 
following rules:

	1.	 Average silhouette score > 0.7; Score = Score + 3
	2.	 0.5 < Average silhouette score < 0.7; Score = Score + 2
	3.	 0.3 < Average silhouette score < 0.5; Score = Score + 1
	4.	 k equals the best value as derived from eigengap method; Score = Score + 3
	5.	 k equals the 2nd-best value as derived from eigengap method; 

Score = Score + 2
	6.	 k equals the best value as derived from rotation cost method; 

Score = Score + 3
	7.	 k equals the 2nd-best value as derived from rotation cost method; 

Score = Score + 2

The value of k for which the score is the highest is chosen as the default 
optimum number of clusters. In addition, the tool also outputs the integrated 
similarity matrix, which can be used for downstream analyses such as label 
propagation and survival analysis47. The tool provides the options for choosing 
between four similarity measures (Bray–Curtis, Gower, Canberra and Jaccard), 
each appropriate for microbiome datasets used to construct a patient or sample 
similarity network, with either SNF or WSNF to integrate these networks.

For the implementation of WSNF, the following formula in SNF

P(ν)
= S(ν)

×

∑

k̸=ν
Pk

(m − 1)
×

(

S(ν)
)T

, ν = 1, 2, 3, …, m

was modified to

P(ν)
= S(ν)

×

∑

k̸=ν
ωk × P(k)

∑

k ̸=ν
ωk

×

(

S(ν)
)T

, ν = 1, 2, 3, …, m

where ωk is the weight of the k dataset, m is the total number of views, P is the 
status matrix and S is the kernel matrix as defined by Wang et al.47. The tool 
assumes that each input microbiome dataset represents a view of an underlying 
biological system or disease. Reliable estimation of each view is assumed when 
using SNF48. However, it may not always be practical to reliably estimate each 
view, although they play an equal role in the underlying biological process. This is 
due to the limitations and differing rates of development in present technologies 
and reference databases. In such cases, a WSNF approach is preferred, which still 
assumes that the input datasets share an underlying biological mechanism, but uses 
the user-specified weights to account for varying reliability in the microbiome data. 
The default weights are assigned based on the taxonomical richness of the datasets 
(that is, the number of microbes present). The user can also specify custom weights 
based on other considerations. The interface of the webtool was developed using 
Rshiny and is available through Shiny Server (open source) in conjunction with 
nginx-1.19.1, and is provided under a 3-clause BSD license. The tool is powered 
by custom scripts written in python 2.7 and R, and is containerized using Docker 
for ease of offline implementation (https://hub.docker.com/r/jayanthkumar/
integrative_microbiomics).

Testing and appraisal of the webtool using publicly available data. In addition to the 
analysis of the study data, to assess the function and utility of our WSNF webtool, 
we applied it to two additional, independent, publicly available datasets that 
assessed corresponding bacterial and fungal profiles.

The first dataset was for oral lichen planus.49 The data encompass salivary 
microbiome datasets for bacteria and fungi isolated from patients with oral lichen 
planus and control subjects. All of the paired-end fastq files containing ITS2 and 
16S rRNA sequences and the accompanying metadata of the saliva samples under 
accession number SRP067603 were retrieved from the NCBI SRA. Pre-processing 
(filtering, trimming, dereplication, merging of paired reads, removal of primers 

and chimeras) and taxonomy profiling (using the UNITE 02.02.2019 release for 
ITS2 and Silva v132 for 16S rRNA) were carried out using the DADA2 package50. 
The resulting datasets for the 52 samples were integrated using the integrative 
microbiomics webtool with K (nearest neighbors) = 6 and method = ‘SNF’. Cluster 
consistency in each case was assessed using Average Silhouette score. Superior 
clustering was noted for our integrative microbiomics approach. The ability of the 
SNF tools to predict associated phenotypes was also investigated, which confirmed 
the ability of SNF to predict clinical status over and above the assessment of 
bacteria and fungi either alone or when concatenated without application 
of network fusion. Although inferior (albeit still significant) at predicting 
clinical class, the SNF approach highlighted differences in interleukin-17 and 
interleukin-23 not apparent on single biome clustering (Supplementary Table 12).

The second dataset was for soil ecosystems.51 The data relate to taxonomic 
profiling of experimentally manipulated grassland ecosystems. Bacterial and 
fungal profiles were determined using 16S and ITS for 48 samples. Unsupervised 
clustering of the data was performed by inputting the described bacterial and 
fungal operational taxonomic unit (OTU) table into the webtool and evaluating 
clusters based on the available metadata downloaded from the respective sources. 
The dataset was integrated using the integrative microbiomics webtool with 
K = 3 and method = ‘SNF’. Cluster consistency in each case was assessed using 
Average Silhouette score. The metadata assessed included the following soil 
variables: Decom (percentage decomposition of leaf litter), N2O (N2O emission 
from soil), grNt (total N in grasses), herbNt (total nitrogen in herbs), legNt (total 
nitrogen in legumes), grPt (total phosphorus in grasses), herbPt (total phosphorus 
in herbs), legPt (total phosphorus in legumes), Pleach (total P leached per 
50 ml), Nleach (total N leached per 50 ml), aveMF (averaged multifunctionality, 
z-score average of all of the above response data) and pcaMF (multivariate 
multifunctionality, summed weighted PCA scores using all of the above response 
data) (Supplementary Table 13).

The integrative microbiomics analysis executed by the SNF webtool had similar 
or improved performance to that of individual or concatenated analysis of bacterial 
and fungal datasets with respect to clustering and association with soil variables, 
most noticeably for the generalized variables aveMF and pcaMF. The SNF webtool 
analysis significantly outperformed other analytical approaches in terms of 
defining microbe-derived clusters associated with environmental variation.

Co-occurrence analysis of microbial interaction within bronchiectasis 
patient clusters. Sequence analysis captures microbial composition on a relative 
scale, rendering microbiome datasets compositional and sparse. Hence, an 
absolute increase in the relative abundance of one species is accompanied by a 
compositional decrease in another, causing the problem of spurious correlations52. 
To address this, Faust et al. developed a novel bootstrap and renormalization 
(Reboot) approach that mitigates these potential issues by calculating statistical 
significance thresholds that account for similarity due to pure compositionality16. 
A weighted ensemble-based co-occurrence analysis along with Reboot was 
implemented to identify the microbial association networks. Co-occurrence 
analysis was implemented with statistical significance testing using Reboot as 
described in Faust et al.16, with the following modifications. First, we included 
the implementation of Mutual Information as a similarity measure instead of 
Kullback–Leibler divergence. Second, we implemented a Mann–Whitney U-test, 
instead of a Z-test, for the pooled variance to compare between the null and 
bootstrap distributions, given that the distributions are not necessarily normal. 
Third, we merged the edge P values from the ensemble networks in a weighted 
fashion using the weighted Simes test. Last, the network edge scores were 
merged as a weighted aggregate of the normalized (calculated as a percentage 
of the maximum) absolute edge scores and the sign assigned based on GBLM 
(generalized boosted linear models), Spearman and Pearson correlation (more 
details described in the GitHub repository). This is important because an 
imbalance in the ensemble method can suppress actual signals and amplify errors. 
Finally, abundance and prevalence filters were applied, and only microbes at 
greater than 1% abundance in at least 5% of subjects were retained. These filters 
are applied to remove interactions resulting from random noise at the expense 
of sensitivity to weak signals. The stability of longitudinal multi-biomes was 
assessed by comparison of α- and β-diversity for individual patients across the 
three assessed timepoints (baseline, exacerbation and post-exacerbation) using 
Kruskal–Wallis and ADONIS (permutational multivariate analysis of variance 
using distance matrices) testing, respectively. To study the stability of interactions 
longitudinally across the three timepoints (that is, baseline, exacerbation and 
post-exacerbation), the relative change in strength of an interaction (defined 
as maximal interaction strength minus minimal interaction strength) across 
timepoints was assessed (differential network analysis). Relative interaction 
change is plotted in Fig. 4g by comparing the change occurring between the 
baseline and exacerbation (B versus E) timepoints and between the exacerbation 
and post-exacerbation (E versus P) timepoints. Pairwise matrices indicate the 
comparative change in interaction observed between individual bacteria, fungi 
or viruses. A relative change in strength of interaction of <3 was considered 
non-differential and reflective of a stable (core) interactome. The codebase to 
implement the co-occurrence analysis and differential network analysis can be 
found at https://github.com/translational-respiratory-lab/The_Interactome.
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Predictive modeling of network response to antibiotic therapy. To model the 
predicted impact of antibiotic therapy on the interactome, we simulated the 
effect of antibiotic treatment on the observed microbial networks. Antibiotic 
therapy exerts a substantial effect on the microbiome, and reduces the relative 
abundance of susceptible microbes53. In modeling network changes, antibiotic 
action was thus simulated by assuming a substantial reduction (that is, 75%; but not 
complete elimination) in the relative abundance of microbes targeted by β-lactam 
antibiotics (without documented intrinsic resistance) in the pre-antibiotic state 
for the following genera: Streptococcus, Staphylococcus, Haemophilus, Moraxella, 
Actinomyces, Arachnia, Bacteroides, Bifidobacterium, Eubacterium, Fusobacterium, 
Lactobacillus, Leptotrichia, Peptococcus, Peptostreptococcus, Propionibacterium, 
Selenomonas, Treponema and Veillonella. The interaction networks of pre-antibiotic 
state (baseline), simulated and observed antibiotic impact were determined by 
assessment of the interactome networks from patients in the longitudinal study 
arm who received β-lactam antibiotics (n = 12; patient demographics are listed in 
Supplementary Table 6). Co-occurrence analysis to derive these three networks 
was performed to assess the utility of network analysis in the modeling and 
prediction of antibiotic impact on the interactome. To remove interactions resulting 
from random noise while maintaining sensitivity to weak signals and to enable 
comparison between the derived interactomes, abundance and prevalence filters 
were applied. Data were filtered for retention of microbes present at greater than 1% 
abundance in each of at least three subjects, in the pre-antibiotic or post-antibiotic 
or modeled antibiotic state. The modeled interactome was validated by comparing 
the network metrics and the rewiring of the pre-antibiotic interactome, between 
the modeled interactome and the post-antibiotic interactome. Network metrics 
such as node degree (busy), stress centrality (critical) and betweenness centrality 
(influential) were calculated and visualized in cytoscape54.

Predictive modeling of time to next exacerbation. Shannon diversity was 
assessed based on renormalized concatenated microbiome (bacteria, fungi and 
virus) datasets at the baseline, exacerbation and post-exacerbation timepoints. 
Distribution differences in Shannon diversity between two groups (time to 
exacerbation, <12 weeks and >12 weeks) was evaluated using Mann–Whitney 
U-test. Microbiome datasets were CLR (centered log ratio) transformed before 
the concatenation of microbes present in at least four patients at an abundance 
of 1%. Correlation between the abundance of each microbe and time to next 
exacerbation was assessed using Spearman’s rank correlation with statistical 
testing. Multivariate adaptive regression spline (MARS), a non-linear regression 
model was implemented with microbes as the predictor variable to predict time 
to next exacerbation55. For interaction-based analysis, LIONESS, a single patient 
network inference framework, was implemented with GBLM as the network 
inference algorithm56. Correlation between the interaction strength of each pair 
of microbes (edge) and time to next exacerbation was assessed using Spearman’s 
rank correlation with statistical testing. Model goodness of fit was evaluated by 
computing the R-squared (RSq) and the generalized R-squared (GRsq) metrics. 
A feature importance plot based on the generalized cross-validation (gcv) score 
was also constructed for the selected features ‘microbes and interactions’. All of the 
above analyses were implemented in R using the packages Hmisc, earth, vegan, 
compositions and lionessR.

Metagenomic analysis. Metagenomic sequencing. The integrity of extracted 
sputum DNA was confi med using the Qubit dsDNA HS Assay Kit (Invitrogen) 
and sequenced on a HiSeq 2500 platform (Illumina) at the Nanyang Technological 
University core sequencing facility according to library preparation and DNA 
sequencing methods described previously57. Read counts in blanks as well as their 
taxonomic assignments are given in Extended Data Fig. 10. Patient demographics 
are listed in Supplementary Table 8 (preliminary functional analysis) and 
Supplementary Table 9 (validation).

Quality control and manipulation of metagenomic sequencing data. Trimmomatic 
(v0.39) (with parameters ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10:1:TRUE, 
LEADING:3, TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:30) was used 
to clip Illumina adapters from the paired-end raw sequencing reads, remove 
low-quality bases at both ends, and drop reads less than 30 base pairs long after 
trimming58. FastQC (v0.11.8) was used to check the quality of the original 
sequencing reads as well as the trimmed ones, while bowtie2 (v2.3.5.1) was used 
subsequently to align the quality-filtered reads to the human reference genome 
(hg38)59. Unmapped, non-human reads were separated and sorted from the human 
reads using samtools (v1.9)60. Fasta files containing these reads, which were used 
for various downstream analyses, were obtained using bedtools (v2.28) and the R 
Bioconductor package ShortRead (v3.6.2)61,62.

Functional analysis. Read processing, quality assessment and functional annotation 
of derived metagenome sequences were performed using the MG-RAST 
annotation pipeline (v4.0.3) with reference to the Kyoto Encyclopedia of Genes and 
Genomes (KEGG)63,64.

Taxonomic analysis. Kaiju (v1.7.2) with default parameters was used to estimate the 
taxonomic composition in sputum. The NCBI BLAST nr+euk database (accessed 

23 July 2019) for non-redundant (nr) proteins belonging to Archaea, Bacteria and 
Viruses, plus Fungi and microbial eukaryotes (euk) was used as a reference.

Assessment of the virome. The composition of the virome was assessed by performing 
metagenomic assembly using Megahit (v1.2.9), VirFinder (v1.1), bowtie2 (v2.3.3.1), 
samtools (v1.3.1), CONCOCT (v1.1.0) and Demovir (https://github.com/feargalr/
Demovir)59,60,65–68. Megahit was initially used to cross-assemble all of the non-human 
reads into contigs, with contigs larger than 1 kilobase in length considered in the 
subsequent analysis. Contigs were classified as a viral or non-viral contig using 
VirFinder, trained on an in-built viral database. The non-human reads of each 
sample were then mapped back to the assembly viral contigs using bowtie2 and 
samtools to assess viral abundance, while CONCOCT was implemented with 
default parameters to generate the final coverage table containing the number 
of raw hits (H) to a specific viral contig. These numbers were normalized as 
described previously69, that is, by adjusting for read length (R), contig length (L) and 
non-human read depth (N) according to the following formula:

H
(

|L−R|
103

)

( N
106

)

=

H
|L − R| · N × 109

where the unit of normalized read counts (or the relative abundance) is given in 
reads per kilobase of reference sequence per million sample reads (RPKM). In 
parallel, Demovir script with its default parameters and database was used to assign 
the taxonomic rank of the viral contigs at the order and family levels, and blastn 
was used to search and align the viral contigs against data from the NCBI viral 
genomes resource (taxid 10239) to find the best matches.

Statistical analysis and data visualization. The Shapiro–Wilk normality test was 
used to examine data distributions. For continuous variables, statistical significance 
was determined using the Mann–Whitney or the Kruskal–Wallis test, with Dunn’s 
test for post-hoc analysis and Benjamini–Hochberg correction when more than 
two groups were present. For categorical variables, Pearson’s chi-squared test or 
Fisher’s exact test (as appropriate) was implemented, with Bonferroni correction 
for multiple comparisons when contingency extended beyond 2 × 2 (ref. 70). 
Relative risk was calculated using the R package, epitools71. In all of the cases, 
two-tailed analysis was considered, and differences were deemed significant at 
P < 0.05. Analysis was performed using R Statistical Software (v3.2.4 and v3.5.1), 
with the ggplot2 package for visualization72. Further information on study design 
and statistical information can be found in the online Nature Research Reporting 
Summary associated with this paper. For analysis of the microbiome, linear 
discriminant analysis effect size was implemented using the webtool available at 
http://huttenhower.sph.harvard.edu/galaxy/ (ref. 73). Co-occurrence networks were 
visualized and annotated in Cytoscape54. A Venn diagram summarizing differences 
in microbial interactions present at different longitudinal timepoints was plotted 
using the R package VennDiagram. The diffany application was used to assess 
for differential changes in interaction strengths across the measured longitudinal 
timepoints, and between the metagenomic (SC2) and targeted amplicon-derived 
(HEF) interactomes74.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All of the sequence data described in this study have been uploaded to the NCBI 
SRA under project accession PRJNA590225. Publicly available taxonomic and 
functional databases are referenced by short-read sequence classification tools 
used in this study as further described in the Nature Research Reporting Summary. 
Other associated data, including bacterial, fungal and viral profiles for all of the 
patients, as well as patient clinical attributes, are available at https://github.com/
translational-respiratory-lab/The_Interactome/tree/master/Data.

Code availability
All code required for generation of the presented results, with accompanying 
documentation, are available at the study’s online code repository (https://github.
com/translational-respiratory-lab/The_Interactome).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Sub-analysis of discrete bacterial, viral and fungal profiles in stable-state bronchiectasis. a, A Principal Coordinate Analysis 
(PCoA) of bacterial microbiome based on Bray-Curtis dissimilarity illustrates three patient clusters. Colour indicates groupings defined by spectral 
clustering analysis. b, The bacterial community profile of each identified cluster is illustrated as bar plots of average relative abundance for the top 20 
identified genera; cluster 1: Pseudomonas-dominant (green), cluster 2: Streptococcus-dominant (blue), cluster 3: Haemophilus-dominant (red). Comparison 
of alpha diversity and clinical features among identified patient clusters (cluster 1; n = 23, cluster 2; n = 125, cluster 3, n = 69), derived from n = 217 
biologically independent samples are illustrated (c) alpha diversity (Shannon diversity index, p = 2.9 × 109), (d) median number of exacerbations in 
the preceding year (p = 2.1 × 104), (e) breathlessness score (MMRC, p = 3.6 × 103), (f) lung function (as FEV1 % predicted, p = 1.8 × 10−1) and (g) 
bronchiectasis severity index (p = 3.9 × 10−3) for patients in each cluster. MMRC = modified medical research council, BSI = bronchiectasis severity 
index; FEV1% = forced expiratory volume in the 1st second (% predicted). Box plots reflect median and IQRs with whiskers bounding non-outlier values. 
Throughout, significance levels are indicated as follows: ns: non-significant; *p < 0.05; **p < 0.01; ***p < 0.001 (Kruskal-wallis with post-hoc Dunn test for 
multiple comparison). h, Viral community profiling in bronchiectasis, assessed by a 17-virus qPCR panel illustrates high viral load (in the stable disease 
state) compared to a non-diseased (healthy) state. Box and whisker plot illustrating overall viral load, expressed as viral genome copies/g sputum, 
quantified by qPCR in virus-positive sputum samples from non-diseased (healthy) individuals (n = 30) and patients with bronchiectasis (n = 217). i, A 
range of viruses and highest prevalence of human parainfluenza virus 3. Prevalence is expressed as percentage of patients demonstrating PCR-positivity 
originating from either Singapore-Kuala Lumpur (SG-KL, n = 120, red bars) or Dundee (DD, n = 97, blue bars). j, PCoA plot illustrating differences between 
bacteriome profiles from our stable state bronchiectasis cohort (grey, n = 217) compared to non-diseased (healthy) controls that include young (<40 years  
of age, green, n = 20) and older (>60 years of age, blue, n = 20) subjects. k, PCoA plot illustrating differences between mycobiome profiles from our stable 
state bronchiectasis cohort (grey, n = 217) compared to non-diseased (healthy) controls that include young (<40 years of age, green, n = 20) and older 
(>60 years of age, blue, n = 20) subjects.
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Extended Data Fig. 2 | Un-weighted SNF analysis of multi-biome data provides inferior resolution of clinically relevant bronchiectasis patient clusters. 
a, A heatmap illustrating pairwise patient similarity scores (range; 0–0.5, blue - red) assessed by spectral clustering. Three distinct patient clusters are 
illustrated by purple, red and orange bars above the heatmap respectively. Clusters are colour-coded as (1) purple; (2) red and (3) orange. b, Linear 
discriminant effect size (LEfSe) analysis of the observed clusters illustrating taxa that discriminate between the multi-biome profiles of each group. A 
bar plot details each of the identified discriminant taxa ranked by effect size. Discriminant taxa with a log-transformed effect size of >3 are presented 
(n = 5). Prefixes indicate whether taxa are bacterial (B), fungal (F) or viral (V). Comparison of alpha diversity and clinical features among identified patient 
clusters (cluster 1; n = 115, cluster 2; n = 88, cluster 3, n = 14) according to integrated multi-biome profiles, derived from n = 217 biologically independent 
samples are illustrated; (c) alpha diversity (Shannon diversity index, p = 3.17 × 10−6), (d) number of exacerbations in the preceding year, p = 4.0 × 10−2), 
(e) breathlessness score (MMRC, p = 3.0 × 10−3), (f) lung function (as FEV1 % predicted, p = 2.5 × 10−1) and (g) bronchiectasis severity index (BSI, 
p = 7.6 × 10−1) for patients in each cluster. Box plots reflect median and IQRs with whiskers bounding non-outlier values. Significance levels for observed 
between-group differences are indicated as follows: ns: non-significant; *p < 0.05; **p < 0.01; ***p < 0.001 (Kruskal-wallis with post-hoc Dunn test for 
multiple comparison).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Sub-analysis of chronic rhinosinusitis (CRS) and antibiotic treatment effects on the microbiome. a, Pie charts displaying 
microbiome profiles for bacteria, fungi and viruses for CRS + and CRS – patients with microbial identity indicated in the right-hand colour legend (n = 217 
biologically independent samples). b, Linear discriminant effect size (LEfSe) analysis of patients with and without CRS illustrating taxa that discriminate 
between the multi-biome profiles of each group. A bar plot details each of the identified discriminant taxa ranked by effect size. Discriminant taxa with a 
log-transformed effect size of >2 are presented (n = 43). Prefixes indicate whether identified taxa are bacterial (B), fungal (F) or viral (V – none detected). 
Black circles indicated taxa previously established to be associated with CRS status. c, Box plots reflect median and IQRs with whiskers bounding 
non-outlier values and illustrate diversity metrics for each of the following groups; no inhaled corticosteroids (ICS) or antibiotic use (No ICS or abx), 
ICS only (ICS only), antibiotics only (abx only), or both (ICS + abx) indicating Shannon Diversity Index and (d) Berger-Parker Index. ns = not significant 
(Kruskal-wallis with post-hoc Dunn test for multiple comparison). e, Pie charts displaying microbiome profiles for bacteria, fungi and viruses for the same 
patient groups with microbial identity indicated in the right-hand colour legend.
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Extended Data Fig. 4 | Co-occurrence networks and prevalence of observed keystone taxa identified in the low (LEF) and high (HEF) exacerbation 
frequency clusters. The interaction profiles of key taxa with other microbes within their network is illustrated for the (a–d) low-exacerbation frequency 
and (e–h) high-exacerbation frequency clusters respectively. Bacteria and fungi with established pathogenic potential including Streptococcus, Haemophilus, 
Candida and Cryptococcus are illustrated. Though common to both clusters, these ‘busy’, ‘critical’ and ‘influential’ microbes exhibited marked differences 
in their interaction networks when assessed individually thereby suggesting that microbial interactions, rather than mere presence or absence of a given 
microbe, may have a direct bearing on the clinical status of patients observed in the high frequency exacerbation cluster. Positive and negative interactions 
(expressed as edge weights) are colour-coded for illustration as indicated in the figure legend. The prevalence of microbial taxa (detected at >1% relative 
abundance) among each group is represented by horizontal bars for LEF (Blue) and HEF (purple) clusters. (i), Bacteria, (j) Fungi, (k) Viruses.
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Extended Data Fig. 5 | Supervised, non-SNF classification of the microbial interactome based on known exacerbation frequencies. Network visualization 
of key microbial taxa in (a) non-frequent (<3 exacerbations/year) and (b) frequent (3 or more exacerbations/yr) are illustrated. Coloured circles represent 
microbes and grey lines their associated interactions within the network. Taxa present at >1% relative abundance in at least 5% of the patient cohort 
are included. Circle size (degree) reflects the number of direct interactions for a given microbe (termed ‘busy’). Circle outline thickness represents the 
calculated stress centrality for each microbe termed ‘critical’ while circle colour depth reflects betweenness centrality or the ‘influence’ of the microbe 
within the network. A table to the right of each network illustrates details the composition of busy (degree), critical (stress centrality) and influential 
(betweenness centrality) microbes observed in non-frequent vs frequent exacerbators. Additional microbes present in the top taxa compared to 
SNF-based analysis (Fig. 3a,b) are highlighted by bold typeface.
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Extended Data Fig. 6 | Additional diversity indices indicating comparable ecological diversity across longitudinal analysis of the integrated 
multi-biome during bronchiectasis exacerbations. Box plots reflect median and IQRs with whiskers bounding non-outlier values and illustrate (a) 
Simpson (b) Berger-Parker and (c) Community dominance index1 for combined bacterial, fungal and viral communities assessed longitudinally in n = 17 
bronchiectasis patients at baseline (pre-exacerbation) (‘B’), during an established pulmonary exacerbation (‘E’) and then post-exacerbation (‘P’) following 
completion of antibiotic therapy. Dotted lines indicate the longitudinal pattern of each individual patient (n = 17). Boxplots are coloured according to their 
respective longitudinal time-point and timepoints indicated by colour: blue = baseline, red = exacerbation, green = post-exacerbation. ns; not significant 
(Kruskal-Wallis).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Comparison of culture data vs microbiome profiles and assessment of the interactome as a predictor of ‘time to next 
exacerbation’ in longitudinal samples. a, For each patient (P1-17, n = 17 biologically independent patient samples) three stacked barplots indicate 
the derived 16S rRNA profiles observed at each timepoint (n = 3) from baseline to exacerbation and post-exacerbation (from left to right). Above 
each set of barplots are the indicated corresponding results from microbiological culture and the antibiotics used to treat the respective exacerbation 
(AMX – amoxicillin, AMC – amoxicillin-clavulanic acid, CAZ – ceftazidime, CIP – ciprofloxacin, DOX – doxycycline, MEM – meropenem, TZP – 
piperacillin-tazobactam). *Asterisks indicate the co-isolation of P. aeruginosa and H. influenzae observed in two patients. A sub-analysis of microbiome 
diversity in patients suffering a subsequent exacerbation in the 12-week period following the initial occurrence versus those who remained exacerbation 
free for >12 weeks post-exacerbation is illustrated. b, Shannon Diversity Index at baseline (pre-exacerbation), during initial pulmonary exacerbation and 
post-exacerbation in those experiencing a second exacerbation in <12 weeks (red, n = 9) and >12 weeks (blue, n = 8). c, Berger-Parker index at baseline 
(pre-exacerbation), during initial pulmonary exacerbation and post-exacerbation in those experiencing a second exacerbation in <12 weeks (red) and 
>12 weeks (blue). Box plots reflect median and IQRs with whiskers bounding non-outlier values. ns; not significant (Kruskal-wallis). d, Correlation 
analysis of microbial abundance and (e) microbial interactions associated with time to next exacerbation. Heatmaps illustrate significant (p < 0.05) 
associated correlations with colour indicating the strength of correlation (Spearman’s ρ). Vertical text font colouration indicates kingdom membership; 
blue = bacteria, green = fungi, red = virus. Psuedom. = Pseudomonas, Strep. = Streptococcus, Neiss. = Neisseria, Sacch. = Saccharomyces. A multivariate adaptive 
regression spline (MARS) was implemented with both microbes and interactions (strength of interaction; edge weight) as predictor variables for ‘time 
to next exacerbation’ defined as; <12 weeks or >12weeks. Feature importance plots based on generalized cross-validation scores (gcv) illustrating the 
most important (f) microbes and (g) microbial interactions predicting the time to next exacerbation across baseline, exacerbation and post-exacerbation 
timepoints. Computed R-squared (RSq) and Generalized R-squared metric (GRsq) are indicated in table (h) reflecting goodness of the fit for each model.
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Extended Data Fig. 8 | Analysis of lung function and breathlessness in functionally-defined patient clusters. Box and whisker plots showing (a) lung 
function (as FEV1 % predicted, p = 3.5 × 10−2) and (b) breathlessness (symptom) score (as MMRC) in patients clustered according to functional analysis 
of sputum-derived metagenomes (FC1; n = 116, FC2; n = 50)). Box plots reflect median and IQRs with whiskers bounding non-outlier values. Significance 
levels for the observed between-group differences are indicated as follows: ns: non-significant; *p < 0.05 (Mann-Whitney U). FEV1% = forced expiratory 
volume in the 1st second (% predicted). MMRC = modified medical research council.
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Extended Data Fig. 9 | Metagenomic analysis of the virome in an independent cohort of n = 166 bronchiectasis patients recruited from Singapore, 
Malaysia, Scotland, and Italy. To gain further insight into the respiratory virome we conducted an analysis of n = 166 metagenomes from sputum. a, A 
schematic overview of the analysis pipeline used to construct virome profiles. Virome profiles were derived by first generating a metagenomic assembly 
using all available metagenomic sequences trimmed and free of contaminating human DNA followed by detection of viral contigs using Virfinder with 
subsequent refinement using CONCOCT yielding 702 contigs present in at least 1% relative abundance in 5% of patients. Taxonomic assignment was 
performed using Demovir and BLAST. b, Relative abundance of viral families identified across samples from Singapore (SG) Kuala Lumpur (KL) Scotland 
(DD) and Italy (IT). c, Relative abundance of viral families identified in wSNF clusters SC1 and SC2. d, LEfSe discriminant taxa analysis comparing viral 
families observed in SC1 and SC2. e, BLAST analysis of identified viral contigs in SC1 and SC2. f, Analysis of antibiotic resistance gene family distribution in 
SC1 versus SC2 (RPKM - Reads Per Kilobase of transcript, per Million mapped reads).
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Extended Data Fig. 10 | Assessment of background DNA contamination in sequencing blank extraction controls. Read counts of taxonomically assigned 
sequences for (a) 16 s rRNA, (b) fungal ITS and (c) WGS metagenomic classification. Open circles represent samples while red squares indicate blank 
DNA extraction controls. Pooled blanks (n = 4) were sequenced for 16 s rRNA and ITS sequencing runs while four (un-pooled) extraction blanks were 
sequenced separately for WGS metagenomic analysis (B1-B4). Observed profiles of (d) bacterial, (e) fungal and (f) metagenomically assigned taxa 
identified in sequencing reads derived from DNA extraction blanks compared to aggregated sample profiles are indicated.
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