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l ctDNA is as an easily
accessible source of
tumor DNA for cHL
genotyping.

l ctDNA is a radiation-
free tool to track
residual disease in cHL.

The rarity of neoplastic cells in the biopsy imposes major technical hurdles that have so far
limited genomic studies in classical Hodgkin lymphoma (cHL). By using a highly sensitive
and robust deep next-generation sequencing approach for circulating tumor DNA
(ctDNA), we aimed to identify the genetics of cHL in different clinical phases, as well as its
modifications on treatment. The analysis was based on specimens collected from 80 newly
diagnosed and 32 refractory patients with cHL, including longitudinal samples collected
under ABVD (adriamycin, bleomycin, vinblastine, dacarbazine) chemotherapy and longi-
tudinal samples from relapsing patients treated with chemotherapy and immunotherapy.
ctDNAmirrored Hodgkin and Reed-Sternberg cell genetics, thus establishing ctDNA as an

easily accessible source of tumor DNA for cHL genotyping. By identifying STAT6 as the most frequently mutated gene
in ∼40% of cases, we refined the current knowledge of cHL genetics. Longitudinal ctDNA profiling identified
treatment-dependent patterns of clonal evolution in patients relapsing after chemotherapy and patients maintained in
partial remission under immunotherapy. By measuring ctDNA changes during therapy, we propose ctDNA as a
radiation-free tool to track residual disease that may integrate positron emission tomography imaging for the early
identification of chemorefractory patients with cHL. Collectively, our results provide the proof of concept that ctDNA
may serve as a novel precision medicine biomarker in cHL. (Blood. 2018;131(22):2413-2425)

Introduction
Anunprecedentedbodyof genetic knowledgehas been translated
into biomarkers to refine diagnosis, prognostication, and treatment
of non-Hodgkin lymphomas (NHLs).1On the contrary, the genetics
of classical Hodgkin lymphoma (cHL) is less well understood.2

Rarity of neoplastic Hodgkin and Reed-Sternberg (HRS) cells in
the biopsies and their routine formalin fixation impose major techni-
cal hurdles that have limited the assessments of cHL mutations
in different clinical phases and under different treatments.

An unmet medical need in cHL is the early and accurate iden-
tification of chemorefractory patients, as they are candidates for
treatment intensification tomaximize the chances of cure, as well
as the early and accurate identification of good-risk patients, as
they are candidates for treatment de-escalation to avoid long-
term complications of chemoradiotherapy.3

Interim positron emission tomography/computed tomography
(PET/CT) is widely used to predict cHL outcome before com-
pletion of chemotherapy and to inform early treatment in-
tensification or de-escalation. However, interim PET/CT results
are inconsistent with the final outcome in ;20% to 30% of
patients, who are thus still exposed to over- or undertreat-
ment.4 By identifying residual disease beyond the sensitivity of
imaging and by specifically tracking tumor fingerprints, mo-
lecular methods hold the potential of complementing PET/CT
in assessing tumor response.5 However, molecular minimal
residual disease has been so far inapplicable in lymphomas that
lack a leukemic component, such as cHL.

Plasma is a source of circulating tumor DNA (ctDNA) for
genotyping purposes,6 and studies using copy number ab-
normalities,7 immunoglobulin gene rearrangement,8 or single
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mutations as tumor marker9 identified ctDNA also in cHL. After
having shown that ctDNA mirrors HRS cells’ mutational
profile, we expanded the applications of ctDNA in cHL by
showing that it can be used to noninvasively detect cHL
mutations without the need for HRS cell microdissection,
longitudinally track cHL clonal evolution under different
treatments, and monitor residual disease during multiagent
chemotherapy with ABVD (adriamycin, bleomycin, vinblas-
tine, dacarbazine).

Methods
Patients
The study had a retrospective observational design. Confirmed
diagnosis of cHL and availability of biological samples were the
sole study inclusion criteria. cHL subtyping was according to
the World Health Organization Classification of Tumors of
Hematopoietic and Lymphoid Tissues criteria.10 Both pre-
viously untreated (n 5 80) and relapsed/refractory (n 5 32)
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Figure 1. ctDNAmirrors the genetics of cHL. (A) Prevalence of nonsynonymous somaticmutations discovered in ctDNAof 15 cHL cases providedwithHRS cells microdissected
from the paired biopsy. The graph below shows the number and type of nonsynonymous somatic mutations identified in each gene. (B) The position and type of nonsynonymous
somatic mutations identified by ctDNA genotyping of the most frequently mutated genes are reported at the top of the proteins. The position and type of nonsynonymous
somatic mutations that have been detected in the tumor gDNA of published cHL series19 (ITPKB and TNFAIP3) or B-cell lymphomas of the COSMIC database (version 81; STAT6)
are reported at the bottom of the protein. Shapes indicate the type of themutations, whereas color codes indicate whether they have been identified in the pairedmicrodissected
HRS cells (red) or they lacked in the pairedmicrodissectedHRS cells (gray). (C) Number of mutations in a given tumor discovered in plasma ctDNA and/or tumor gDNA. Mutations
are color coded if they were identified in both plasma ctDNA and tumor gDNA (red), only in plasma ctDNA (blue), or only in tumor gDNA (gray). (D) Venn diagram summarizing the
overall number of mutations discovered in both plasma ctDNA and tumor gDNA (red), only in plasma ctDNA (blue), or only in tumor gDNA (gray). The corresponding overall
sensitivity of plasma cfDNA genotyping in discovering biopsy-confirmed mutations is shown. (E) For each patient, the fraction of tumor biopsy-confirmed mutations that were
detected in plasma ctDNA is shown. Patients are ordered by decreasing detection rates. The red portion of the bars marks the prevalence of tumor biopsy-confirmed mutations
that were detected in plasma ctDNA. The gray portion of the bars marks the prevalence of tumor biopsy-confirmed mutations that were not detected in plasma ctDNA.
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patients with cHL were included. All relapsed/refractory cHL
failed both first-line therapy as well as autologous transplant
salvage. The following biological material was analyzed: cell-
free DNA (cfDNA) isolated from plasma collected at diagnosis
before treatment start (n 5 80 patients), during ABVD courses
(on day 1 of course 2 at the time of interim reassessment, and
at the end of treatment; n 5 24 patients), at refractory pro-
gression (n 5 32 patients), before and after failing auto-
transplant salvage (n5 6), before and after failing brentuximab
vedotin (n 5 5 patients), and before and during therapy with
nivolumab (n5 5 patients); and normal germline genomic DNA
(gDNA) from peripheral blood granulocytes collected at the
same time of the paired plasma sample. For comparative

purposes, tumor gDNA from HRS cells and gDNA from biopsy
areas devoid of HRS cells were also analyzed. Paired plasma
samples were collected in close temporal proximity of the
tumor tissue biopsy (7-14 days after the biopsy). cfDNA from
newly diagnosed diffuse large B-cell lymphoma (DLBCL; n 5 19)
and primary mediastinal large B-cell lymphoma (n 5 3) and the
corresponding paired normal gDNA were also analyzed. DLBCLs
have been previously published and now reanalyzed with a dif-
ferent target region.11 Patients provided informed consent in
accordance with local Institutional Review Board requirements
and the Declaration of Helsinki. The study was approved by
the Cantonal Ethical Committee of Ticino (CE 3236, BASEC 2017-
01004).

Microdissection, immunohistochemistry, and in
situ hybridization
The percentage of tumor cells was visually estimated inde-
pendently by 2 pathologists (L.M.L. and M. Martini) on hema-
toxylin and eosin-stained slides. For each case, multiple specific
tumor areas containing 20% to 40% HRS cells were micro-
dissected to enrich the proportion of neoplastic cells, and were
pooled. Marking the tumor enriched-regions within tissue sam-
ples relied on the visual assessment of tissue sections or CD30
immunohistochemical staining of HRS cells. Areas devoid of
HRS cells were also microdissected for comparative purposes.
Expression of pSTAT6 and MCH-I was assessed by immuno-
histochemistry and scored as previously reported (supplemental
Appendix, available on the Blood Web site).12,13 In situ hybrid-
ization of Epstein-Barr virus–encoded small RNAs (EBERs) on
formalin-fixed and paraffin-embedded tissue section was carried
out as described.14

CAPP-seq library preparation, ultra-deep NGS,
and variant calling
To avoid preanalytic confounding effects, a standardized ap-
proach was used to extract cfDNA from plasma (supplemental
Appendix). A targeted resequencing gene panel including
coding exons and splice sites of 77 genes (target region: 191 271
bp) that are recurrently mutated in mature B-cell tumors has
been specifically designed for this project (supplemental
Table 1) as follows: initial seed genes were chosen if recurrently
mutated in more than 5% of mature B-cell tumors, in the case of
well-known cancer genes (even if mutated in 1%-5% of cases), or
if they were known to be associated with resistance to che-
motherapy in mature B-cell tumors; and for genes with a well-
defined hotspot, only coding exons plus splice sites that
included more than 95% of mutations were covered. Tumor and
germline gDNA from tissues (median 5 450 ng) were sheared
through sonication before library construction to obtain 200-bp
fragments. For cfDNA, which is a naturally fragmented DNA, a
median amount of 79.63 ng was used for library construction
without additional fragmentation. The next-generation sequencing
(NGS) libraries were constructed using the KAPA Library Prepa-
ration Kit (Kapa Biosystems), and hybrid selection was performed
with the custom SeqCap EZ Choice Library (Roche NimbleGen). In
the CAncer Personalized Profiling by deep Sequencing (CAPP-seq)
of cfDNA, the manufacturer’s protocols were modified as pre-
viously reported.15 Multiplexed libraries were sequenced using
150- or 300-bp paired-end runs on NextSeq or MiSeq sequencers
(Illumina). A robust and previously validated bioinformatics pipeline
was used for variant calling (supplemental Appendix).11

Table 1. Characteristics of the 80 newly diagnosed
patients with cHL

Characteristic Patients, n (%)

Male sex 42 (52.4)

Median age, y 44 (17-82)

Age range, y 17-82
17-24 19 (23.75)
25-44 22 (27.5)
45-60 20 (25)
61-82 19 (23.75)

Histology
Nodular sclerosis 64 (80)
Mixed cellularity 12 (15.0)
Lymphocyte rich 3 (3.7)
Unclassifiable 1 (1.2)

EBER
Positive 15 (18.7)
Negative 38 (47.5)
Not assessable 27 (33.7)

Ann Arbor Stage
I 2 (2.5)
II 26 (32.5)
III 18 (22.5)
IV 34 (42.5)

Stage strata*
Limited 14 (17.5)
Advanced 66 (82.5)

GHSG risk group
Favorable 3 (3.8)
Intermediate 17 (21.3)
Unfavorable 60 (75.0)

IPS
Low, 0-3 63 (78.7)
High, $4 17 (21.3)

Bulky disease 16 (20.0)

B symptoms 43 (53.8)

GHSG, German Hodgkin Study Group Score; IPS, International Prognostic Score.

*Limited stage: IA, IB, or IIA without bulky disease. Advanced stage: III, IV, or I or II with bulky
disease or IIB.

cHL GENOTYPING ON THE LIQUID BIOPSY blood® 31 MAY 2018 | VOLUME 131, NUMBER 22 2415

D
ow

nloaded from
 https://ashpublications.org/blood/article-pdf/131/22/2413/1468652/blood812073.pdf by ISTITU

TO
 C

LIN
IC

O
 H

U
M

AN
ITAS user on 25 M

arch 2020



Validation of hotspot STAT6 mutation
Hotspot STAT6 mutations (c.1249A.T and c.1255G.A) dis-
covered by CAPP-seq in cfDNA were validated by allele-specific
polymerase chain reaction (supplemental Appendix).

Imaging studies
PET/CT scans were performed at baseline for initial staging, after
2 cycles of ABVD and at the end of treatment, or at baseline, after
4, 10, 17, and 25 cycles of nivolumab. PET and CT images were
acquired in the same session. CT scans obtained with a low-dose
protocol were used for attenuation-correction of the PET images.
All patients were fasting for at least 6 hours before the injection of
250 to 370MBq (4.5 MBq/kg) 18FDG (fluorodeoxyglucose). Blood
glucose measured before injection of the radiotracer was lower
than 160 mg/dL in all patients. PET data were acquired in 2- or
3-dimensional mode from the midthigh toward the base of the
skull after a standardized uptake time of 60 minutes (65 minutes).

The PET acquisition time was at least 3 minutes per bed position.
Images were reconstructed with validated and commercially avail-
able iterative algorithms, and standardized uptake values were
automatically calculated. A central blind analysis was performed by
trained nuclear physicians (L.C., S.A., V.R., and A.G.) without in-
formation on the clinical outcome. The 18FDG-PET/CT images
obtainedat baseline andduring treatmentwere analyzed followinga
standard protocol on a dedicated workstation (Siemens Syngo
MMWP Workstation VE36A; Siemens). The interim and end-of-
treatment and 18FDG-PET/CT images scans were visually assessed
according to the Deauville criteria, with 18FDG uptake of any residual
lesion scored according to the 5-point scale, usingmediastinal blood
pool and liver uptake as reference settings.16 The LYmphoma Re-
sponse to Immunomodulatory therapy Criteria (LYRIC) were ap-
plied on treatment with nivolumab.17 Diffuse uptake in the spleen
or marrow on the postchemotherapy scan that was considered a
result of chemotherapy was not scored as active disease.
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Figure 2. Themutational profile of newly diagnosed cHL. The heatmap shows individual nonsynonymous somaticmutations detected in ctDNAof newly diagnosed cHL (n5 80).
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Statistical analysis
Progression-free survival was measured from date of ABVD
treatment start to date of progression (event), death from any cause
(event), or last follow-up (censoring). Overall survival was measured
from date of ABVD start to date of death (event) or last follow-up
(censoring). Molecular studies were blinded to the study endpoints.
Survival analysis was performed by Kaplan-Meier method. Un-
supervised hierarchical clustering (Euclidean distance, complete
method) according to the mutational status was performed using
the extended package in the R environment (https://cran.r-project.
org/package5dendextend; R Studio console; RStudio, Boston,
MA). Categorical variables were compared by x-square test and
Fisher’s exact test. Continuous variables were compared by Mann-
Whitney U test. All statistical tests were 2-sided. Statistical sig-
nificance was defined as P , .05. Correction for multiple
comparisons was performed by using the false-discovery-rate
method. The analysis was performed with SPSS v.22 and with R
statistical package 3.3.2 (http://www.r-project.org).

Results
Circulating tumor DNA mirrors the genetics of
HRS cells
The study was based on specimens collected from 80 newly
diagnosed patients and 32 patients with relapsed-refractory

cHL, including longitudinal samples obtained under ABVD
chemotherapy and from relapsing patients treated with che-
motherapy and immunotherapy. We retrospectively profiled a
total of 349 blood and tissue samples

To provide the proof that ctDNA informs on cHL genetics, it was
initially genotyped using CAPP-seq, a sensitive (;1023) and vali-
dated targeted ultra-deep-NGS approach for ctDNA,11,15 in a
discovery set of 15 patients (mean coverage: 49413; supplemental
Figure 1A) provided with paired tumor gDNA isolated from HRS
cells. Paired normal gDNAwas also analyzed to confirm the somatic
origin of mutations (mean coverage: 46263; supplemental
Figure 1B). High concordance (R2 5 0.978) of variant calling
from independent duplicate experiments supported the robust-
ness of CAPP-seq of ctDNA, including detection of low-abundance
mutations (supplemental Figure 1D), thus excluding their origin
from a batch-specific experimental noise.

Nonsynonymous somatic mutations were discovered in ctDNA
of all 15 patients with cHL, including variants of the TNFAIP3,
ITPKB,GNA13, and B2M genes, which were previously reported
in studies of purified HRS cells (Figure 1A).18,19 The molecular
spectrum of mutations discovered in ctDNA also reflected that
of published cHL variants (Figure 1A-B), thus supporting their
tumor origin.18,19
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To validate our approach and formally confirm the tumor origin
of ctDNA variants, HRS cell-enriched areas (tumor representa-
tion, 20%-40%) were microdissected from the paired tumor
biopsies and their gDNA analyzed by CAPP-seq blinded to the
mutational profile recovered in the paired ctDNA. To system-
atically derive the accuracy of ctDNA genotyping, the results of
plasma ctDNA genotyping and tumor gDNA genotyping (gold
standard) were then compared. Mean coverage of the tumor
gDNA was 17333 (supplemental Figure 1C). Genotyping of
plasma ctDNA identified a total of 106 somatic mutations,
whereas genotyping of the gDNA from HRS cells identified 96
somatic mutations (Figure 1C-D). Nomutations were detected in
areas of the biopsy devoid of HRS cells, thus validating mutation
origin from HRS cells. Biopsy-confirmed tumor mutations were
detectable in ctDNA samples with an 87.5% (n 5 84/96; 95%
confidence interval, 79.2%-92.8%) sensitivity (Figure 1D-E). A
few variants were not identified in tumor gDNA. These variants
were bona fide neoplastic, according to their molecular profile
(Figure 1B) and disappearance on disease remission. Their ab-
sence in microdissected HRS cells was conceivably a result of the
subclonal or anatomical heterogeneity of the tumor, as already
extensively reported in other ctDNA studies.11,15,20

Noninvasive genotyping of newly diagnosed cHL
After having established that ctDNAmirrors tumor gDNA in cHL,
we used this source of tumor DNA to noninvasively characterize
the mutational spectrum of 80 newly diagnosed patients whose
clinicopathologic characteristics are summarized in Table 1. We
detected nonsynonymous somatic mutations in 81.2% of pa-
tients, with an average of 5 mutations per case. The lack of
correlation between number of mutations and coverage or input
cfDNA for library preparation (supplemental Figure 2A-B) in-
dicated that the conditions of our CAPP-seq reached a plateau
in sensitivity that was uniformly maintained across all the study
samples. The mean allele frequency of ctDNA mutations was
5.5% (range, 0.29%-74.0%), and the majority (87.3%) had an
allele frequency higher than 1% (supplemental Figure 1C).
Pretreatment ctDNA concentration correlated with a stage and
prognostic group of cHL, thus pointing to ctDNA as a surrogate
marker of tumor load (supplemental Figure 3).

Genes recurrently affected by nonsynonymous somatic muta-
tions in 20% or more of patients included STAT6 (37.5%),
TNFAIP3 (35.0%), and ITPKB (27.5%; Figure 2; supplemental
Table 2), which often co-occurred in the same patient (Figure 2;
supplemental Figure 4). Hotspot STAT6 mutations (c.1249A.T,
n 5 26; c.1255G.A, n 5 12) discovered in cfDNA were con-
firmed on a different experimental platform by allele-specific
polymerase chain reaction, thus validating CAPP-seq results
(supplemental Figure 5). STAT6 and TNFAIP3 mutations were
enriched in nodular sclerosis cHL compared with other cHL

subtypes, including mixed cellularity cases, and among EBER-
negative cHL compared with EBER-positive cases (Figure 3),
further reinforcing the notion that cHL subtypes have different
genetic profiles.18,19 STAT6 mutations also were more frequent
among patients aged 60 years or younger, which might reflect
the enrichment of mixed cellularity and EBER-positive cases
among elderly cHL (supplemental Figure 6).

Mutated genes pointed to themolecular deregulation of specific
programs in cHL. NF-kB was mutated in 46.2% of patients, con-
sistent with the strong NF-kB signature of HRS cells (Figure 4A).21,22

At variance with DLBCL, cHL was virtually devoid of mutations in
upstream molecules that converge surface signals to NF-kB and
that sensitize tumor cells to Bruton tyrosine kinase inhibition
(Figure 2).23 PI3K/AKT was affected in 46.2% of patients, consistent
with the preclinical evidence that cHL is addicted to this actionable
cellular program (Figure 4B).24,25 Cytokine signaling was mutated in
37.5% of patients (Figure 4C), although the prevalence of genetic
lesions affecting this pathway may be higher and not fully captured
by our target region that did not cover the SOCS1 gene. A number
of epigenetic genes were cumulatively affected in 35.0% of pa-
tients, with the exception of EZH2, whose druggable mutations
were rare in cHL (Figures 2 and 4D).26 Genes involved in immune
surveillance were mutated in 27.5% of patients (Figure 4E). The
NOTCH pathway was mutated in 20.0% of patients (Figure 4F), in
keeping with the NOTCH signature of HRS cells.25,27

pSTAT6 expression in the nucleus of HRS cells from STAT6mutated
cases provided the proof of principle of the functional consequences
of STAT6 mutations (Figure 5E-G). Nuclear pSTAT6 expression by
HRS cells was broader than STAT6 mutations in our cHL cohort
(Figure 5H), a fact thatmaybe consistent with theplethora of genetic
mechanisms affecting the cytokine signaling program in this tumor,
someofwhichwerenot exploredbyour assay (eg:SOCS1mutations
and chromosome 9p amplification. B2M mutated cases always
lacked MHC-I expression in Hodgkin-Reed Sternberg cells, thus
indirectly validatingB2M variants discovered in cfDNA (Figure 5A-C).
MHC-I was absent in a proportion of B2M wild-type patients
(Figure 5D). In those cases, alternative genetic mechanisms not
exploredbyour assay, such asB2Mgene locusdeletionormutation/
deletion of the HLA genes, may be responsible for the loss ofMHC-I
expression, as previously reported in DLBCL.28

We next compared the ctDNAgenetic signatures of cHL, DLBCL,
and primary mediastinal large B-cell lymphoma by applying a
probabilistic classifier derived from differentially represented
mutations. As already shown by gene expression profiling,25 cHL
and primarymediastinal large B-cell lymphoma clustered together
also genetically, whereas the majority (79.5%) of cHL showed a
distinct mutational signature compared with DLBCL (supple-
mental Figure 7).

Figure 6 (continued) samples from 13 patients with refractory cHL. (C) Schematic representation of mutational divergence between baseline/relapse pairs of 13 refractory cHL cases.
The central node represents baseline (T1), and the distance between baseline and each refractory relapse (edge) is expressed as the fraction of unique mutations to both baseline and
relapse points. (D) Phylogenetic tree describing evolutionary distances between sequential tumor pairs in a refractory cHL case. Inferred ancestral clones are also indicated. Evolutionary
distance is defined as the fraction of shared mutations between tumor at the baseline and relapse time points (black node), the fraction of mutations specific for the baseline time point
(red node), and the fraction of mutations specific for the relapse point (blue node). On the y-axis, 100% represents all mutations identified throughout the longitudinal course of the
patient. The time between baseline and relapse is depicted on the x-axis. The leftmost node (gray circle) indicates the germline cell, and the second node from the left (black circle)
indicates the last common inferable ancestral clone. The length of the branch between the germline cell and the common ancestral clone reflects the fraction of shared mutations
between baseline and relapse samples. The length of the branches between the common ancestral clone and either baseline or relapse samples reflects the fractions of mutations
observed only in baseline or relapse samples, respectively. The colored light blue area represents the clonal divergence between baseline and relapse points. Mutated genes shared
between baseline and relapse time points (black), mutated genes specific for baseline (red), and mutated genes specific for relapse time point (blue) are annotated.
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Noninvasive monitoring of clonal evolution in
refractory cHL
To identify mutations that are enriched in refractory cHL, 32
patients who relapsed after salvage autologous stem cell
transplant were genotyped on ctDNA, and their aggregated
mutational profile was compared with that of newly diagnosed
patients. Paired analysis of HRS cells microdissected from bi-
opsies collected along with plasma at the time of relapse con-
firmed that ctDNA also mirrors the tumor genotype at this point
of the disease (Figure 1E).

Overall, themutational profiles of newly diagnosed and refractory cHL
were largely overlapping (Figure 6A), suggesting that genemutations
not covered by our target region or molecular mechanisms not
captured by CAPP-seq might contribute to the chemorefractory
phenotype. The origin of ctDNA mutations from clonal hemato-
poiesis selected by chemotherapy rather than cHL was ruled out by
the observation that they did not occur in paired peripheral blood
granulocytes collected at the same time of the plasma sample.29

To define cHL clonal evolution patterns, we genotyped longitu-
dinal ctDNA samples (n 5 41 from 13 patients) collected before
frontline treatment (ie, ABVD), at the time of relapse, and during
salvage therapies comprising transplantation, brentuximab
vedotin, and nivolumab. The amount of input cfDNA for library
preparation and sequencing coverage were similar across longi-
tudinal samples, indicating that differences in the representation of
mutations was not the result of a difference in the sensitivity of the
CAPP-seq (supplemental Figure 2C-D). Clonal shifts between
pretreatment and relapse samples were documented in all cases
(Figure 6B-C), thus demonstrating that evolution after therapy is the
rule. In patients relapsing under/after chemotherapy or brentuximab
vedotin, diagnosis/relapse tumor pairs branched through the ac-
quisition of phase-specific mutations from an ancestral clone that
persisted throughout disease course (Figure 6D; supplemental
Figure 8). Mutations of STAT6, GNA13, ITPKB, and TNFAIP3 were
preferentially inferred in the ancestral clones, indicating that they are
an early event in cHL (Figure 6D; supplemental Figure 8). Overall,
these data point to ctDNA genotyping as a tool for the noninvasive
monitoring of cHL clonal evolution and suggest that in a refractory
setting, chemotherapy and chemotoxins only partially reshape the
subclonal composition, leaving intact the ancestral clones.

Among patients maintaining a partial response under nivolu-
mab, ancestral clones were cyclically suppressed and replaced
by novel clones harboring new mutations (supplemental
Figure 9). Such a patternmight be interpreted as a drug-promoted
aggression against cancer neoantigens stemming from mutations
and the attempt made by the tumor to evade treatment by
generating new mutations.

Dynamics of circulating tumor DNA during therapy
complements dynamics of PET/CT in cHL
response assessment
We followed serial plasma samples during therapy in a cohort of
24 patients with advanced cHL treated with ABVD. Patients
achieving complete response and cure had a larger drop in
ctDNA load after 2 ABVD courses compared with relapsing
patients (Figure 7A-B), and the magnitude of the drop was
maintained until the end of the therapy (Figure 7C). A drop of
100-fold or 2-log drop in ctDNA after 2 chemotherapy courses,

a threshold proposed and validated in DLBCL30 and confirmed
as best cutoff to predict progression in our cohort (Figure 7D), was
associated with complete response and cure (Figure 7A,E). Con-
versely, a drop of less than 2-log in ctDNAafter 2ABVDcourseswas
associated with progression and inferior survival (Figure 7A,E;
supplemental Figure 10). Quantification of ctDNA complemented
interim PET/CT in determining residual disease. Indeed, cured
patients who were inconsistently judged as interim PET/CT-positive
had a more than 2-log drop in ctDNA, whereas relapsing patients
who were inconsistently judged as interim PET/CT negative had a
less than 2-log drop in ctDNA (Figure 7A). The lack of correlation
between log fold change of maximum standardized uptake value
and log fold change of ctDNA between baseline and interim
evaluations (supplemental Figure 11) is consistent with the notion
that maximum standardized uptake value largely reflects the
metabolic activity of the inflammatory component of the mass in
cHL, whereas ctDNA reflects the tumor load levels.

Immune checkpoint inhibitors can cause false-positive PET/CT
results in cHL as a result of tumor flares or pseudoprogression.17

We followed longitudinal plasma samples collected during
therapy with nivolumab from 5 patients with refractory cHL.
Among 4 patients stabilized in partial remission, ctDNA load did
not change under nivolumab treatment, thus reflecting the
persistence of the tumor (supplemental Figure 9). One patient
achieved a PET/CT complete remission with clearance of ctDNA.
He became ctDNA-positive during a PET/CT, and biopsy con-
firmed tumor flare (supplemental Figure 1E).

Discussion
The study establishes ctDNA as source of tumor DNA for cHL
mutational profiling. By overcoming the major technical hurdles
that have so far limited cHL genotyping, our technical approach
based on ctDNA has allowed large-scale assessment of muta-
tions in different clinical phases of the disease, ranging from
newly diagnosed to refractory disease, and longitudinally during
disease treatment.

Despite targeted resequencing being underpowered compared
with exome sequencing in discovering new candidates, this
study refines the current knowledge of cHL genetics. First,
STAT6 is identified as the most frequently mutated gene in cHL,
which is in keeping with the known importance of cytokine
signaling in the biology of this tumor,2,13,25 but was not reported
in previous exome sequencing studies of cHL cases.19 Second,
mutation recurrence of previously discovered genes is defined
more precisely. As an example, our approach has narrowed the
estimate of the recurrence of B2M mutations in cHL, which is
lower than previously reported,19 and consistent with that ob-
served in another cHL study.31 Third, the notion that different
histologic subtypes of cHL are biologically distinct, as previously
shown at the transcriptome level,25 is extended and reinforced at
the genetic level.19,20 Fourth, a few major pathways emerged as
recurrently mutated, including NF-kB, PI3K-AKT, cytokine and
NOTCH signaling, and immune evasion. Of note, these path-
ways have been previously identified by gene expression pro-
filing and functional genomic studies of cHL,13,21,22,24,25,32

indicating that mutations act as red flags highlighting cellular
programs that are relevant for the biology of the disease and
potential therapeutic targets.
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By longitudinally profiling patients with cHL treated with ABVD
or brentuximab vedotin, we provide the evidence for a reservoir
ancestral population that, as in other lymphoma models,33 is
resistant to chemotherapy and propagates successive disease
relapse. New mutations appearing in ctDNA mark resistant
clones that are selected during the clonal evolution process
taking place under the selective pressure of treatment, although
they may not be directly causative of relapse.

Immunotherapy is conversely capable of eradicating ancestral
clones, and its selective pressure elicits a quick clonal evolution
that was unexpected in cHL, resulting in the complete reshape
of the disease mutation profile in few months. The evolving

landscape of mutations, which are the major source of neo-
antigens in cancer,34 is a mechanism of tumor escape from
immunotherapy35,36 and might be at the basis of either the long-
lasting partial responses or periodical tumor flares that patients
typically experience under treatment with immune checkpoint
blockers.37,38

Although interimPET/CT response assessment is a novel approach
to refine management strategies before completing treatment in
cHL,39-41 meta-analyses demonstrated a certain degree of inac-
curacy of this application.42,43 To fill this gap, an area of growing
interest is pairing interim PET/CT with biomarkers to enhance their
cumulative predictive value.44,45 Our results provide the proof of
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Figure 7. Change in tumor ctDNA is a prognostic biomarker in cHL treatedwith chemotherapy. (A)Waterfall plot of the log-fold change in ctDNA load after 2 courses of
ABVD in 24 advanced stage cHL cases. On top of the graph, the interim PET/CT response scored according to the Deauville criteria and the final outcome of the patient
are indicated. Histological subtype of cHL are shown above the plot. Each column is color coded according to the interim PET/CT results and the final patient outcome.
Levels of ctDNA are normalized to baseline levels. The dash line tracks the 22-log threshold (CR, complete remission and cure; iPET, interim PET/CT; ND, not
detectable; PD, progressive disease). (B) Box plot showing the fold change of ctDNA after 2 ABVD courses among patients who progressed vs patients who were cured.
The band inside the box is the median, the bottom and top of the box are the first and third quartiles, and the ends of the whiskers represent the range. P value by Mann-
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measurements at the specified points. Each line is color coded according to the interim PET/CT results and the final patient outcome. (D) Maximally selected log-rank
statistics identifies;2-log-fold reduction in ctDNA levels after 2 ABVD courses as the best cutoff for progression-free survival (PFS) anticipation. (E) Kaplan-Meier curve
of PFS stratified according to whether a 2-log reduction in ctDNA was achieved or not after 2 ABVD courses in 24 advanced stage cHL cases. Among patients achieving
more than 2-log reduction after 2 ABVD courses, the sole event registered was a death in remission. Conversely, among patients achieving less than 2-log reduction
after 2 ABVD courses, all the events were progressions.
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principle that ctDNA can measure residual disease during treat-
ment in cHL. Moreover, our data generated the hypotheses that
ctDNA quantification after 2 chemotherapy courses may have
prognostic implications, and that ctDNAmay complement interim
PET/CT in informing on patients’ outcome. Incorporation of both
PET/CT and ctDNAmonitoring into clinical trials should allow us to
precisely define their cumulative sensitivity and specificity in an-
ticipating the clinical course of patients with cHL.
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