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Exome sequencing identifies rare LDLR and APOA5
alleles conferring risk for myocardial infarction
A list of authors and their affiliations appears at the end of the paper

Myocardial infarction (MI), a leadingcauseofdeatharound theworld,
displays a complex pattern of inheritance1,2. When MI occurs early
in life, genetic inheritance is amajor component to risk1. Previously,
rare mutations in low-density lipoprotein (LDL) genes have been
shownto contribute toMI risk in individual families3–8,whereascom-
mon variants at more than 45 loci have been associated with MI risk
in the population9–15. Here we evaluate how rare mutations con-
tribute to early-onset MI risk in the population. We sequenced the
protein-coding regions of 9,793 genomes from patients with MI at
anearly age (#50years inmales and#60years in females) alongwith
MI-free controls. We identified two genes in which rare coding-
sequencemutationsweremore frequent inMI cases versus controls
at exome-widesignificance.At low-density lipoproteinreceptor (LDLR),
carriers of rarenon-synonymousmutationswere at 4.2-fold increased
risk for MI; carriers of null alleles at LDLR were at even higher risk
(13-fold difference). Approximately 2% of earlyMI cases harbour a
rare, damaging mutation in LDLR; this estimate is similar to one
mademore than40 years agousing an analysis of total cholesterol16.
Among controls, about 1 in 217 carried an LDLR coding-sequence
mutation and had plasma LDL cholesterol. 190mgdl21. At apo-
lipoprotein A-V (APOA5), carriers of rare non-synonymousmuta-
tions were at 2.2-fold increased risk for MI. When compared with
non-carriers, LDLRmutationcarriershadhigherplasmaLDLcholes-
terol, whereasAPOA5mutation carriers had higher plasma triglyc-
erides. Recent evidence has connectedMI riskwith coding-sequence
mutations at twogenes functionally related toAPOA5, namely lipo-
protein lipase15,17 and apolipoproteinC-III (refs 18, 19). Combined,
these observations suggest that, aswell asLDLcholesterol, disordered
metabolismof triglyceride-rich lipoproteins contributes toMI risk.
TheUSNationalHeart, Lung, and Blood Institute’s exome sequenc-

ing project (ESP) sought to use exome sequencing as a tool to identify
genes andmechanisms contributing to heart, lung and blood disorders.
Within this program, we designed a discovery study for the extreme
phenotypeof early-onsetMI (Fig. 1), as heritability is substantially greater
whenMI occurs early in life1,2. From eleven studies, we identified 1,088
caseswithMI at an early age (MI inmales#50 years old and in females
#60 years old). As a comparison group, we selected 978 participants
fromprospective cohort studies whowere of advanced age (males$60
years old or females$70 years old) and free of MI.
We sequenced cases and controls to high coverage by performing

solution-based hybrid selection of exons followed bymassively parallel
sequencing (seeMethods)20.Weperformed several quality control steps
to identify and remove outlier samples and variants (see Methods and
Supplementary Figs 1–13). Characteristics of the discovery set of 1,027
cases and946controls areprovided inSupplementaryTables 1–3.Across
the autosomes, each participant had an average of 43 nonsense, 7,828
missense, 92 splice-site, 189 insertion ordeletion (indel) frameshift, 366
indel non-frameshift, and 103 non-synonymous singleton variants.
We first testedwhether low-frequency coding variants (defined here

as a singlenucleotide variant (SNV)or indelwithminor allele frequency
(MAF) between 1% and 5%) are associated with risk for MI in the dis-
covery sequencing study.We observed no significant association ofMI
status with any individual variant (Supplementary Fig. 14). We next

evaluated the hypothesis that rare alleles (defined here as a SNV or
indel with MAF,1%) collectively within a gene contribute to risk for
MI (see Methods). We tested for an excess (or deficit) in cases versus
controls of rare, non-synonymous mutations by aggregating together
SNVs and indelswithMAF,1%(‘T1’ test) in each gene and comparing
the counts in cases and controls21. Empirical P values were obtained
using permutation.
The need to aggregate rare variants requires consideration of which

variants to be studied together. Ideally, onewould aggregate only harm-
ful alleles and ignore benign alleles. To enrich for harmful alleles, we
considered three sets of variants: (1) non-synonymous only; (2) a ‘dele-
terious (PolyPhen)’ set consisting of non-synonymous after excluding
missense alleles annotated as benign by PolyPhen-2HumDiv software;
and (3) ‘disruptive’ mutations only (nonsense, indel frameshift, splice-
site; also referred to as ‘null’ mutations). To account for multiple test-
ing, we set exome-wide significance for this study at P5 83 1027, a
Bonferroni correction for the testing of,20,000 genes and three variant
sets.When theT1 testwas applied across these three sets of alleles in the
discovery sequencing study, no gene-based association signal deviated
from what we expected by chance (Supplementary Figs 15–22).
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Figure 1 | Overall design for the early-onset myocardial infarction study
within the US National Heart, Lung, and Blood Institute’s exome
sequencing project (ESP). Whole exome sequencing was performed in
1,973 individuals from the phenotypic extremes. To test the hypothesis that
low-frequency variants confer risk for myocardial infarction (MI), we
performed follow-up statistical imputation and array-based genotyping of
single nucleotide variants. To test the hypothesis that a burden of rare
mutations in a gene confers risk for MI, we performed targeted re-sequencing
and additional exome sequencing.
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We followed up on discovery sequencing results in four ways: (1)
statistical imputation; (2) array-based genotyping using the Illumina
HumanExomeBeadchip (‘Exome’ chip); (3) targeted re-sequencing; and
(4) additional exome sequencing (Fig. 1). Imputation and array-based
genotypingwereused tomainly evaluate low-frequencyvariants,whereas
targeted re-sequencing and exome sequencing were used to test the
role of rare mutations.
With the first and second follow-up approaches: imputation (n5

64,132) and array-based genotyping (n5 15,936), respectively, we did
not identify novel low-frequency variants associatedwithMI or coronary
artery disease (CAD) (see Methods, Supplementary Tables 4–7 and
Supplementary Figs 23–27). The top association results for SNVs from
array-based genotyping are shown in Supplementary Table 8.
In the third follow-up approach, we re-sequenced several genes in

additional cases and controls (see Methods, Supplementary Table 9).
After sequencing the exons ofAPOA5 in 6,721 cases and 6,711 controls,
we identified 46 unique non-synonymous or splice-site SNVs or indel

frameshiftswith allele frequency, 1%(SupplementaryTable10). Based
on these variants, we observed 93 alleles in cases and 42 alleles in con-
trols (P5 53 1027; Table 1, Fig. 2 and Supplementary Table 10). This
burden of raremutation signalwas primarily driven bymutations seen
in one or two study participants (Fig. 2 and Supplementary Table 10).
Carriers of a rare APOA5mutation had a 2.2-fold higher risk for MI/
CAD than non-carriers (Table 1).
According to a recent report, consideration of variant sets based on

multiple protein prediction algorithmsmight yield stronger association
signals22. Therefore,we investigated twoadditional variant sets: (1) ‘dele-
terious (broad)’ as defined by nonsense, splice-site, indel frameshift,
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Figure 2 | Apolipoprotein A-V (APOA5) mutations discovered after
sequencing of 13,432 individuals. Individual mutations (non-synonymous,
indel frameshift and splice-site variants with minor allele frequency less than
1%) are depicted according to the genomic position along the length of the
APOA5 gene starting at the 59 end (top). The number of circles on the left and
right represents the number of times that mutation is observed in cases or
controls, respectively. Dashed lines across the gene connect the same mutation
seen in both cases and controls. Mutations are shaded in red (observed in
cases only), blue (observed in controls only) or yellow (observed in both cases
and controls).

Table 1 | Association of a burden of rare mutations in APOA5 with risk for early-onset myocardial infarction or coronary artery disease
Mutation set n cases/controls T1 cases T1 controls Freq cases (%) Freq control (%) OR P

Non-synonymous 6,721/6,711 93 42 1.4 0.63 2.2 5 31027

Deleterious (PolyPhen) 6,721/6,711 63 31 0.94 0.46 2.0 6 31025

Deleterious (broad) 6,721/6,711 68 31 1.0 0.46 2.2 2 31025

Deleterious (strict) 6,721/6,711 10 3 0.15 0.045 3.3 0.008
Disruptive 6,721/6,711 9 2 0.13 0.03 4.5 0.007

Summary allele counts and carrier frequencies are shown. Only SNVs and indels with minor allele frequency less than 1% were considered in burden analysis. Deleterious (PolyPhen) as defined by nonsense,
splice-site, indel frameshift, and missense annotated as ‘possibly damaging’ or ‘probably damaging’ by PolyPhen-2 HumDiv software; ‘deleterious (broad)’ as defined by nonsense, splice-site, indel frameshift,
andmissense annotated as deleterious by at least one of the five protein prediction algorithms of LRT score, MutationTaster, PolyPhen-2HumDiv, PolyPhen-2HumVar and SIFT; ‘deleterious (strict)’ as defined by
nonsense, splice-site, indel frameshift, andmissense annotatedasdeleteriousbyall fiveprotein prediction algorithms;Disruptivedefinedasnonsense, splice-site or indel frameshift; T1: alleles fromSNVsor indels
with minor allele frequency less than 1%; Freq (%): percentage of cases or controls carrying a T1 allele; OR: odds ratio.
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Figure 3 | Low-density lipoprotein receptor (LDLR) mutations discovered
after sequencing 9,793 individuals. a, Individual disruptive mutations
(nonsense, indel frameshift, and splice-site variants withminor allele frequency
less than 1%) are depicted according to the genomic position along the length of
the LDLR gene starting at the 59 end (top). The number of circles on the left
and right represents the number of times that mutation is observed in cases or
controls, respectively. Mutations are shaded in red if observed in cases only
or blue if observed in controls only. b, LDL cholesterol level as observed in
different LDLR gene mutation annotation categories. Mean (height of bar) and
95% confidence intervals (error bars) are shown. Each individual is categorized
based on mutation annotation as follows. Non-carriers: carriers without a
missense or disruptive mutation; deleterious (PolyPhen) as defined by
nonsense, splice-site, indel frameshift, and missense annotated as ‘possibly
damaging’ or ‘probably damaging’ by PolyPhen-2 HumDiv software;
‘deleterious (broad)’ as defined by nonsense, splice-site, indel frameshift, and
missense annotated as deleterious by at least one of five protein prediction
algorithms (LRT score, MutationTaster, PolyPhen-2 HumDiv, PolyPhen-2
HumVar and SIFT); ‘deleterious (strict)’ as defined by nonsense, splice-site,
indel frameshift, and missense annotated as deleterious by all five of the above
protein prediction algorithms; disruptive: carriers of mutations that are
nonsense, indel frameshift, or splice-site.
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and missense annotated as damaging by at least one of five protein
prediction algorithms; and (2) ‘deleterious (strict)’ as defined by non-
sense, splice-site, indel frameshift, andmissense annotated as damaging
by all five protein prediction algorithms (see Methods). Carriers of a
rare APOA5 deleterious (strict) mutation had an even higher risk for
MI/CAD (3.3-fold, P5 0.008).
A burden of rare mutations in APOA5 explains about 0.14% of the

total variance for MI and roughly 0.28% of the heritability (assuming
that additive genetic factors explain,50% of the overall variance) (see
Methods and Supplementary Table 11). When compared with non-
carriers, carriersof rarenon-synonymousAPOA5alleleshadhigherplasma
triglycerides (median in carriers was 167mg dl21 versus 104mg dl21

for non-carriers, P5 0.007) and lower high-density lipoprotein cho-
lesterol (mean in carriers was 43mg dl21 versus 57mg dl21 for non-
carriers, P5 0.007), but similar LDL cholesterol (median in carriers
was 110mg dl21 versus 108mg dl21 for non-carriers, P5 0.66) (Sup-
plementary Table 12).
In the fourth follow-up approach, we performed exome sequencing

in additional early-onset MI/CAD cases and controls, bringing the
total number of exomes analysed to 9,793 (Supplementary Tables 13
and 14). We tested for an excess (or deficit) in cases versus controls of
raremutations in any gene (Supplementary Fig. 28 and Supplementary
Tables 15–17). At this sample size, rare alleles collectively conferred
risk forMI at exome-wide significance in only one gene, LDLR (Fig. 3).
After sequencing the exons of LDLR in 4,703 cases and 5,090 con-

trols, we identified 156 unique non-synonymous, splice-site SNVs and
indel frameshifts with allele frequency,1% (Table 2 and Supplemen-
tary Table 18). Of these variants, we observed 285 alleles in cases (6.1%
of cases) and 208 alleles in controls (4.1% of controls) (1.5-fold effect
size, P5 43 1026) (Table 2). When restricting analysis to the delete-
rious (PolyPhen) set, 3.1% of cases and 1.3% of controls carried at least
one such rare mutation, for a 2.4-fold effect size (P5 13 10211). A
higher effect size of 4.2-fold (P5 33 10211)was observedwhen restrict-
ing to the deleterious (strict) set.When restricting to disruptive alleles,
0.51% of cases and 0.04% of controls carried at least one such rare
disruptive mutation, for a 13-fold effect size (P5 93 1025) (Table 2
and Fig. 3).
Among controls, approximately 1 in 217 individuals carried an LDLR

non-synonymous or disruptive mutation and had LDL cholesterol
. 190mg dl21; in contrast, among cases, approximately 1 in 51 indi-
viduals carried an LDLR non-synonymous or disruptivemutation and
had LDL cholesterol. 190mg dl21.
A burden of rare mutations in LDLR explains about 0.24% of the

total variance forMI and roughly 0.48%of the heritability (seeMethods
and Supplementary Table 19). LDL cholesterol level differed based on
functional class annotation with the greatest difference seen between
carriers of disruptive mutations and those who did not carry any non-
synonymous mutations (279mg dl21 versus 135mg dl21, Fig. 3 and
Supplementary Table 20). Approximately 49% of the LDLR alleles dis-
covered in this study (77of 156)havebeenpreviously observed inLDLR
familial hypercholesterolemia databases23 (Supplementary Table 21).
Using these rare variant signals as a guide, we estimated sample sizes

thatwill be required tomake similar discoveries. Avery large number of
samples, at least 10,000 exomes, are required to achieve 80% statistical

power at an exome-wide level of statistical significance (Supplementary
Figs 29–31).
Here we show that a burden of rare alleles in two genes, LDLR and

APOA5, contributes to risk forMI.These results suggest several conclu-
sions regarding the inherited basis for MI and rare variant association
studies. First, after aDNAsequence-based searchacrossnearly all protein-
coding genes in.9,700 early-onsetMI cases and controls,LDLR is the
strongest association signal, withmutations in the gene accounting for
about 2% of cases. In 1973, Goldstein and colleagues studied survivors
of early MI and noted two common lipid abnormalities: hypercholes-
terolemia andhypertriglyceridemia16.On thebasis of a total cholesterol
value exceeding,285mgdl21, it was estimated that 4.1% of cases with
MI prior to the age of 60 had familial hypercholesterolemia; this ori-
ginal estimate is similar to ours based on direct sequencing. In contrast,
the prevalence of harmfulLDLRmutations in the general population is
higher than the original estimate (,0.5 in the present study versus 0.1–
0.2% byGoldstein). Second, the rare variant association signal presented
here establishes APOA5 as a bona fide MI gene. Initially discovered
through comparative genomics analysis of a region harbouring several
lipid regulators (that is, APOA1 and APOC3), the APOA5 locus har-
bours commonvariants associatedwith plasma triglycerides24. Candi-
date gene and genome-wide association studies have associated common
variants at this locus also with MI risk (that is, 21131T.C, APOA5
promoter region, rs662799, MAF of 8%)25,26. However, because of ex-
tensive linkage disequilibrium in this region, it had been previously
uncertain which gene is responsible for the association with MI. The
identification ofmultiple coding sequence variantswithinAPOA5 clar-
ifies that this gene contributes toMI risk in the population. Third, these
datapoint to a route toMIbeyondLDLcholesterol, namely triglyceride-
rich lipoproteins27 and the lipoprotein lipase pathway.Genetic variation
at two other proteins related toAPOA5 function, apolipoprotein C-III
(refs 18, 19, 28) and lipoprotein lipase15,17, has been associatedwith tri-
glycerides andMI risk. Finally, the present studymakes clear that rare
variant discovery for complex disease will require the sequencing of
thousands of cases and careful statistical analysis. Two reasons for the
large sample size requirement are an inability to readily distinguish
harmful from benign alleles and the extreme rarity of harmful alleles.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in theonline versionof thepaper; referencesunique
to these sections appear only in the online paper.
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METHODS
General overview of the Exome Sequencing Project (ESP). Details of the study
design of the National Heart, Lung and Blood Institute’s GO exome sequencing
project (NHLBI ESP) have been published previously29. Briefly, the goal of the
NHLBI ESP was to discover rare coding variation in genes contributing to heart,
lung and blood disorders using next-generation sequencing of the protein-coding
regions of the genome (exome sequencing). The study includes five primary groups
including: Seattle GO (University ofWashington, Seattle,Washington); BroadGO
(Broad Institute, Cambridge, Massachusetts); WHISP (Ohio State University
Medical Center, Columbus, Ohio); Lung GO (University of Washington, Seattle,
Washington); Heart GO (University of Virginia Health System, Charlottesville,
Virginia) and two collaborating groups, WashU GO (Washington University, St
Louis) andCHARGE-SGO(University of TexasHealth SciencesCenter,Houston,
Texas).
We included samples from several studies: Women’s Health Initiative (WHI);

Framingham Heart Study (FHS); Jackson Heart Study (JHS); Multi-Ethnic Study
of Atherosclerosis (MESA); Atherosclerosis Risk in Communities (ARIC); Coro-
nary Artery Risk development in Adults (CARDIA); Cardiovascular Health Study
(CHS); Lung Health Study (LHS); COPD genetic epidemiology (COPD Gene);
severe asthma research project (SARP); pulmonary arterial hypertension (PAH);
acute lung injury (ALI); cystic fibrosis (CF); Cleveland Clinic GeneBank (CCGB);
Massachusetts General Hospital premature coronary artery disease study (MGH
PCAD); Heart Attack Risk in Puget Sound (HARPS); Translational Research In-
vestigatingUnderlyingDisparities inAcuteMyocardial InfarctionPatients’Health
Status (TRIUMPH) and the PennCath study.
General overview of the ESP early-onset myocardial infarction study.Within
theNHLBI ESP, we designed an exome sequencing experiment specifically to study
early-onset myocardial infarction (EOMI). We selected EOMI cases and controls
from eleven studies, including: ARIC, MESA, CCGB, FHS, HARPS, MGH PCAD,
PennCath, TRIUMPH,WHI, CHS, and JHS (Supplementary Tables 1–3). Samples
were selected based on the extreme tails of the phenotypic distribution, in order to
enrich for a genetic contribution to disease. EOMI cases were defined as individuals
whohadanMI at an ageof#50 formenand#60 forwomen.Controlswere selected
as individualswith nohistory ofMI at baseline or during follow-up to at least age 60
for men and 70 for women. The study samples, along with case and control defini-
tions, are briefly described below and shown in Supplementary Tables 1–3.
Study and phenotype descriptions for ESP EOMI
TheHeartGOconsortium. HeartGO is amultiethnic consortium consisting of six
NHLBIpopulation-based cohorts ofmen andwomen:ARIC,CHS, FHS,CARDIA,
JHS, and MESA. The age range of participants in these six cohorts spans the spec-
trum from early adulthood to old age, providing a broad age representation. Each
participating cohort in HeartGO has completed ascertainment of multiple pheno-
types, including all of the major cardiovascular risk factors (blood pressure, lipids,
diabetes status), biomarkers including measures of blood cell counts, subclinical
disease imaging, and cardiovascular and lung outcomes including MI and stroke.
Participants in all six cohorts provided written informed consent. The NIH data-
base of genotypes and phenotypes (dbGaP) site contains further details regarding
the phenotypes accessible for each individual HeartGO cohort.
ClevelandClinicGeneBank (CCGB).TheCCGB study is a single-centre prospec-
tive cohort-based study that enrolled patients undergoing elective diagnostic cor-
onary angiography between 2001 and 2006.
Heart Attack Risk in Puget Sound (HARPS). The HARPS study is a population-
based case-control study that enrolled cases with incident MI presenting to a net-
work of hospitals in the metropolitan Seattle–Puget Sound region of Washington
State between 1998 and 2002.
The Massachusetts General Hospital premature coronary artery disease (MGH
PCAD) study. The MGH PCAD study is a hospital-based case-control study that
enrolled cases hospitalized with early MI at MGH between 1999 and 2004.
PennCath. The PennCath study is a catheterization-lab based cohort study from
the University of Pennsylvania Medical Center and enrolled subjects at the time of
cardiac catheterization and coronary angiography between 1998 and 2003. Persons
undergoing cardiac catheterization at either the Hospital of the University of
Pennsylvania or Penn Presbyterian Medical Center consented for the PennCath
study to identify genetic and biochemical factors related to coronary disease.
TheTranslationalResearch InvestigatingUnderlyingDisparities inAcuteMyo-
cardial InfarctionPatients’Health Status (TRIUMPH). TheTRIUMPHstudy is
a large, prospective, observational cohort study of consecutive patients with acute
MI presenting to 24 US hospitals from April 2005 to December 2008. MI was
diagnosed using contemporary definitions30 and all patients had an elevated tro-
ponin blood test.
Women’sHealth Initiative (WHI).WHI is amajor researchprogramthathas been
ongoing for over 20 years to address the most common causes of death, disability

andpoorquality of life inpostmenopausalwomen—cardiovascular disease, cancer,
and osteoporosis.
Studies involved in follow-up statistical imputation, array-based genotyping,
targeted re-sequencing and additional exome sequencing
Statistical imputation.We performed statistical imputation of single nucleotide
variants (SNVs)discovered in the exomesof the first 786 samples.We imputedexonic
SNVs into64,132 independent samples in 16 studies to test for associationof coding
SNVs with MI or CAD. The studies are described in Supplementary Table 5.
Array-based genotyping.Weperformed follow-up array-based genotyping using
the Illumina HumanExome Beadchip (‘exome chip’) array in 15,936 independent
samples from seven studies. The studies are described in Supplementary Table 7.
Targeted re-sequencing.Weperformed targeted re-sequencingof theAPOA5gene
in an additional 11,414 individuals from five cohorts. The studies are described in
Supplementary Table 9.
Exome sequencing-based follow-up. We performed exome sequencing in addi-
tional individuals from three cohorts. The studies are described in Supplementary
Table 13.
Detailed methods for the processing and analysis of samples for the various

stages of the project are described below.Wedescribemethods for the different stages
of the project, including discovery exome sequencing, follow-up imputation, array-
based genotyping, targeted re-sequencing and additional exome sequencing.
Laboratorymethods for discovery exome sequencing in the ESPEOMIProject.
Exomesequencing.Exomesequencingwasperformedat theBroad Institute. Sequenc-
ing and exome capturemethods have been previously described29. A brief descrip-
tion of the methods is provided below.
Receipt/quality control of sample DNA. Samples were shipped to the Biological
SamplesPlatform laboratory at the Broad Institute ofMITandHarvard.DNAcon-
centration was determined by the Picogreen assay (Invitrogen) before storage in
2D-arcoded 0.75mlMatrix tubes at220 uC in the SmaRTStore (RTS,Manchester,
UK) automated sample handling system.Weperformed initial quality control (QC)
on all samples involving sample quantification (PicoGreen), confirmation of high-
molecular weight DNA and fingerprint genotyping and gender determination
(Illumina iSelect). Samples were excluded if the total mass, concentration, integ-
rity of DNA or quality of preliminary genotyping data was too low.
Library constructionand in-solutionhybrid selection. Startingwith 3mg of geno-
mic DNA, library construction and in-solution hybrid selection were performed
as described previously31. A subset of samples, however, was prepared using this
protocol with some slightmodifications. Initial genomicDNA input into shearing
was reduced from 3mg to 100 ng in 50ml of solution. In addition, for adaptor liga-
tion, Illumina paired-end adapters were replaced with palindromic forked adap-
ters with unique 8 base index sequences embedded within the adaptor.
Preparation of libraries for cluster amplification and sequencing. After in-
solution hybrid selection, libraries were quantified using qPCR (KAPA Biosystems)
with probes specific to the ends of the adapters. This assay was automated using
Agilent’s Bravo liquid handling platform. Based on qPCR quantification, libraries
were normalized to 2 nM and then denatured using 0.1N NaOH using Perkin-
Elmer’s MultiProbe liquid handling platform. A subset of the samples prepared
using forked, indexed adapters was quantified using qPCR, normalized to 2 nM
using Perkin-Elmer’s Mini-Janus liquid handling platform, and pooled by equal
volume using the Agilent Bravo. Pools were then denatured using 0.1N NaOH.
Denatured sampleswere diluted into strip tubes using thePerkin-ElmerMultiProbe.
Cluster amplification and sequencing. Cluster amplification of denatured tem-
plateswasperformedaccording to themanufacturer’sprotocol (Illumina)usingeither
Genome Analyzer v3, Genome Analyzer v4, or HiSeq 2,000 v2 cluster chemistry
and flowcells. After cluster amplification, SYBRgreen dyewas added to all flowcell
lanes, and a portion of each lane visualized using a light microscope, in order to
confirm target cluster density. Flowcells were sequenced either onGenomeAnalyzer
II using v3 and v4 Sequencing-by-SynthesisKits, then analysed using RTAv1.7.48,
or on HiSeq 2,000 using HiSeq 2,000 v2 Sequencing-by-Synthesis Kits, then ana-
lysed using RTA v1.10.15. All samples were run on 76 cycle, paired end runs. For
samples preparedusing forked, indexed adapters, Illumina’sMultiplexing Sequenc-
ing Primer Kit was also used.
Readmapping andvariant analysis. Sampleswere processed fromreal-timebase-
calls (RTA1.7 software [Bustard], converted toqseq.txt files, and aligned toa human
reference (hg19) usingBurrows–WheelerAligner (BWA, see ref. 32).Aligned reads
duplicating the start position of another read were flagged as duplicates and not
analysed (‘duplicate removal’). Data was processed using the Genome Analysis
ToolKit (GATKv1.1.3, ref. 33). Readswere locally realigned (GATK IndelRealigner)
and their base qualities were recalibrated (GATK TableRecalibration). Variant
detection and genotyping were performed on both exomes and flanking 50 base
pairs of intronic sequence using theUnifiedGenotyper (UG) tool from theGATK.
Variant data for each sample was formatted (variant call format (VCF)) as ‘raw’
calls for all samples. SNVs and indel sites were flagged using the variant filtration
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walker (GATK) to mark sites of low quality that were likely false positives. SNVs
were marked as potential errors if they exhibited strong strand bias (SB$ 0.10),
low average quality (quality per depth of coverage (QD), 5.0), or fell in a homo-
polymer run (HRun. 4). Indels were marked as potential errors for low quality
(quality score (QUAL), 30.0), lowaverage quality (QD,2.0), or if the site exhib-
ited strong strand bias (SB .21.0). Samples were considered complete when
exome targeted read coverage was$ 203 over$ 80% of the exome target.
Data analysis QC. Fingerprint concordance between sequence data and finger-
print genotypes was evaluated. Variant calls were evaluated on both bulk and per-
sample properties: novel and known variant counts, transition–transversion (TS–TV)
ratio, heterozygous–homozygous non-reference ratio, anddeletion/insertion ratio.
Both bulk and samplemetricswere compared to historical values for exome sequenc-
ing projects at the Broad Institute. No significant deviation of the ESP variants or
ESP samples from historical values was noted.
Data processing, quality control and association analysis of discovery exome
sequencing
Variant calling. Variants (SNVs and indels) were identified and genotyped from
recalibrated BAM files34 using the multi-sample processing mode of the Unified
Genotyper tool from the GATK. Variants were first identified and genotyped in
random batches of 100 samples. The batches were then merged into a single VCF
file using the GATK CombineVariants tool.
Variantannotation. Variants (SNVsand indels)wereannotatedusing theGRCh37.64
database using the SNP effect predictor tool (SnpEff, see ref. 35) and the GATK
VariantAnnotator. Theprimary SnpEff genomic effects thatwere annotated include:
splice-site acceptor, splice-site donor, indel frameshift, indel non-frameshift, non-
sense, non-synonymous and synonymous variants. For variants that have different
annotations due to multiple transcripts of the gene, the highest impact effect for
each variant was taken.
Sample level quality control. We performed several quality control steps to iden-
tify and remove outlier samples (Supplementary Figs 1–8). First, we required that
each samplehad aminimumof20-fold coverage for at least 80%of the targetedbases.
Second, we compared self-reported ancestry with that inferred from the sequence
data and removeddiscordant samples.Third,we removed sampleswithhighdegree
of heterozygosity and lownumber of singleton counts as this pattern suggestsDNA
contamination across samples. Fourth, we removed samples with an extremely
highnumber of variants or singletons as this can suggest lowqualityDNA. Finally,
we removed samples exhibiting amismatch between the reported gender and that
inferred fromsequencedata.Of 2,066 cases and controls sequencedacross the exome,
we removed 93 samples due to these exclusion criteria.
Variant level quality control. QC measures were also performed to remove low
quality variants.Weassessedpopulation geneticsmetrics including theTS–TV ratio,
the ratio of thenumber of heterozygous changes to thenumber of homozygous non-
reference changes, and the number of non-synonymous to the number of synonym-
ous changes. This analysis can help filter false positive calls since we expect the true
TS–TV to be around,3.2 in European populations33, while a set of random SNVs
(or false positive variants) should give a random expectation of 0.5. Variants with
low depth of coverage (DP) and high percent missingness generally had low TS–
TV and heterozygous–homozygous non-reference ratios. Variants were removed
if therewasDP,8 average per sample and.2%missingness (Supplementary Figs
9–12). Distribution of allele frequencies of the SNVs is shown in Supplementary
Fig. 13.
Common variant association analysis.We performed single variant association
analysis in our exome sequencing data set. For SNVs with MAF greater than 5%,
we ran logistic regression, after adjusting for 10 principal components while for
SNVswithMAF less than 5%,we ranFisher’s Exact test.Weperformedassociation
analysis in European Americans and African Americans separately and then per-
formed sample sizeweightedmeta-analysis usingMETAL36. The association results
are shown in Supplementary Fig. 14.
Rare variant association analysis. To test whether rare mutations contribute to
MI, we performed burden of rare variant analysis on the,2,000 ESPEOMI exome
samples. We performed a variant of the Combined Multivariate Collapsing test21,
that groups the count of alleles of SNVs in cases and controls. Phenotype labels
were permuted 100,000 times to assign a statistical significance.We accounted for
ethnicity by permuting phenotype labels within each ethnicity. Association ana-
lysis was performed using PLINK/SEQ.
We collapsed variants based on computational predictions from PolyPhen-2

HumDiv37. Minor allele frequencies were calculated from all available samples
sequenced in each study in order to obtain the most accurate MAF estimates.
Therefore, calculation of MAF for ESP EOMI 1 and 2 was performed on a larger
set of exome samples that were sequenced at the Broad Institute as part of ESP
(n5 970 exomes for ESP EOMI 1 and n5 3,014 for ESP EOMI 2). For our burden
of rare variant association analysis, we use a MAF threshold of 1% (T1). Further-
more, we use three different types of variant groupings when collapsing by gene.

These variant groups are: (1) non-synonymousonly; (2) a deleterious set consistingof
non-synonymousafter excludingmissense alleles annotated as benignbyPolyPhen-2
HumDiv software; and (3) disruptive (nonsense, indel frameshift, splice-site) muta-
tions only. We also performed the T1 test after collapsing all non-synonymous
mutations by KEGG pathways (Supplementary Figs 21 and 22).
Methods for follow-up statistical imputation
Construction of referencepanels and targeted imputationpanels.Exome impu-
tationswereperformedusing tworeferencepanels and16 targeted imputationpanels.
A total of 697 ESP samples (436 African Americans and 261 European Americans)
were used for the first reference panel while 89 samples from the 1000 Genomes
Project38 were drawn for the second reference panel. For the ESP reference panel,
all samples fromARIC(n5 212), JHS (n5 119),MGHPCADorHARPS (n5 151)
andWHI studies (n5 41)were genotypedusing commercially availableAffymetrix
6.0 arrays. Samples from the FHS (n5 174) were genotyped using the Affymetrix
5.0 array. The second reference panel was comprised of samples from the 1000
Genomes Project that had genotype data for both low coverage sequencing and
high coverage exome sequencing data38. A total of 89 sampleswere selected from 6
diverse populations (23AfricanAncestry in SouthwestUS (ASW), 9Utah residents
withNorthern andWestern European ancestry (CEU), 12Colombian inMedellin,
Colombia (CLM), 25Mexican Ancestry in Los Angeles, CA (MXL), 17 Toscani in
Italia (TSI) and 3 Yoruba in Ibadan, Nigeria (YRI) samples). Low-coverage whole
genome sequencing, high-coverage exome sequencing and targeted exome capture
were performed based on standard protocols at the Broad Institute. Details of the
sequencingmethods and samples havebeendescribedpreviously38. Imputationwas
performed into 16 independent study samples with genome-wide genotype data.
Study samplesweregenotypedusing commercially availableAffymetrixor Illumina
genotyping arrays. Further details are described in Supplementary Table 5.
Reference panels were created by merging genotypes from SNVs that span the

entire genome (hence, providing a haplotype ‘scaffold’), with genotypes from SNVs
from ESP exome sequencing data. The first reference panel was generated using
genotypes from both genome-wide SNV arrays obtained from dbGAP and exome
sequencing data. The second reference panel was generated using genotype data
for both low coverage sequencing and high coverage exome sequencing data. Both
the reference panel and targeted genome-wide panel were phased using the ‘best
guess haplotypes’ option in IMPUTE2 (ref. 39).Haplotype phasingwere performed
in 5 megabase chunks as recommended by the software tutorial39.
Data processing, quality control and association analysis. Imputation of the
exome was performed using IMPUTE2.We imputed approximately 400,000 cod-
ing SNVs from the reference panels into 28,068 cases and 36,064 controls from 16
different study sampleswith genome-wide data.Descriptions for the study samples
have been reported elsewhere (Supplementary Table 5 for references). We filtered
SNVswithMAF, 1% and imputation quality (INFO),0.5 from further analysis.
The distribution of imputation qualities of the SNVs is shown in Supplementary
Figs 23 and 24. Association testing for CAD/MI was performed using the score
method and assuming an additive model in SNPTEST40. Age, sex and the first two
principal componentswereusedas covariateswhen appropriate.Wedidnot observe
any indication of excess inflation of test statistics in any of the study samples
(Supplementary Table 22). Meta-analysis of study-specific P values for imputed
SNVswasperformedusing theZ-scoremethodweightedby sample size inMETAL.
Beta and standard errorswere estimatedbasedonan inverse-weightedmeta-analysis.
The distribution of association results for the imputation results is shown in Sup-
plementary Fig. 25 and top association results in Supplementary Table 6.
Methods for follow-up array-based genotyping
Laboratorymethods.DNAsamples were sent to the Broad Institute Genetic Ana-
lysis Platform for genotyping andwere placedon96-well plates for processing using
the Illumina HumanExome v1.0 SNP array. Genotypes were assigned using
GenomeStudio v2010.3 using the calling algorithm/genotyping module version
1.8.4 along with the custom cluster file StanCtrExChp_CEPH.egt. Only samples
passing an overall call rate of 98% criteria and standard identity checkwere released
from the genetic analysis platform.
Data processing, quality control and association analysis.To identify single low-
frequencySNVsassociatedwithMIorCAD,weperformedarray-based genotyping
using the Illumina Human Exome Beadchip. We genotyped 83,680 sites identified
from exome sequencing in 1,027 early-onsetMI cases and 946 controls. The sam-
ples for genotyping were drawn from the cohorts listed in Supplementary Table 7
and have been previously described. The functional effect of each variant was
predicted using the SeattleSeq Annotation server. For variants having more than
one functional class, the most deleterious class was retained.
Several quality control processes were employed to ensure high quality geno-

types and samples were used in the association analysis. Samples were excluded for
the following criteria: greater than 5% missing genotypes; discordance between
inferred gender basedon genotype and self-reported gender; inbreeding coefficient
less than20.2 or greater than 0.2; duplicated samples; or proportion of genotypes
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identical by descent.0.2. In addition, principal componentswere calculated using
Eigenstrat 4.2 (ref. 41) and sampleswere removed if theywere found to be statistical
population outliers. Variants were removed for the following criteria: MAF5 0%;
significant difference betweenmissingness in cases comparedwith controls; extreme
deviation from Hardy–Weinberg equilibrium (P, 13 1026); or significant asso-
ciation with genotyping plate assignment. All quality control filtering were per-
formed using PLINK42 and R (The R Project for Statistical Computing, Vienna,
Austria).
Association testing for CAD/MI was performed within each study separately

using logistic regressionwith tenprincipal componentsof ancestry as covariates.An
inverse standard-error weighted meta-analysis was performed to combine results
across studies. The association testingwas performedusingPLINK42 and themeta-
analysis was performed using METAL. There was no indication of an inflation of
test statistics across studies (SupplementaryTable 23). The stability of logistic regres-
sion was assessed by examining the standard error of the beta estimate as a function
of minor allele frequency (see Supplementary Fig. 32). As shown, logistic regression
is unstable for aMAF, 0.05%. Fisher’s Exact test was used for variants withMAF
, 0.05%. The top association results are shown in Supplementary Table 8.
Methods for follow-up re-sequencing
Selection of genes.We first selected six associated genes (based on biologic and/or
statistical evidence with T1 P, 0.005; APOA5, CHRM5, SMG7, LYRM1, APOC3,
NBEAL1) for replication sequencing in the ATVB study (Supplementary Table 24)
where all cases had suffered an MI before age of 46. We also pursued the same six
genes in the OttawaHeart Study with 552 cases and 586 controls (Supplementary
Table 25). One of the genes (APOA5) continued to show significant results and
was sequenced in three additional studies (Table 1 and Supplementary Table 26).
In total,weperformed follow-up sequencingofAPOA5 in six study samples, includ-
ing the Verona heart study (VHS), Ottawa heart study (OHS), additional exomes
fromatherosclerosis, thrombosis, and vascular biology Italian study group (ATVB),
additional exomes from the ESPEOMI study (ESP EOMI 2), Precocious Coronary
Artery Disease Study (PROCARDIS), and the Copenhagen City Heart Study and
Copenhagen Ischaemic Heart Disease Study (CCHS/CIHDS).
Laboratorymethods.For theVHS study, genomicDNAwas extracted fromwhite
blood cells using the salting-out method. The protein-coding regions correspond-
ing to theRefSeq transcriptsNM_052968 forAPOA5 andNM_012125 forCHRM5
were sequenced using in-house designed primers (available on request) and the
BigDyeTerminatorCycle SequencingKit v1.1 onanABI-3130XLGeneticAnalyzer
(AppliedBiosystems, FosterCity,CA). SNVswere called using theVariantReporter
software v1.1 (Applied Biosystems).
For the OHS study, PCR primers were designed, tested and optimized to target

the exons and flanking non-coding sequences for each gene. Sequencing reactions
were performed using big dye terminator chemistry and chromatograms obtained
withanAppliedBiosystemsABI 3730XL capillary sequencer.Chromatogramswere
base-calledbyusingPhred, assembled into contigs byusingPhrap, and scanned for
SNVs with PolyPhred43 to identify polymorphic sites. Each read was trimmed to
remove low-quality sequence (Phred score,25), resulting in analysed reads with
anaveragePhredquality of 40.After assembly andvariant calling, eachpolymorphic
sitewas reviewedby adata analyst usingConsed44 to ensure thequality andaccuracy
of the variant calls. This process generates sequence-based SNV genotypes with
accuracy.99.9%.
For the PROCARDIS study, a single long range PCR product (LRPCR) was

amplified to provide coverage of theAPOA5 exonic, intronic and flanking sequences
(humanreference sequenceNCBIbuild37chromosome11:116,659,905–116,664,331).
The LRPCR products were tagged with unique sequence (barcode) adaptors, and
processed into 56 short amplicons (Reflex reactions, http://www.populationgenetics.
com) and pooled for multiplex next-generation sequencing (NGS). NGS was per-
formed on aMiSeqpersonal sequencer to.203 coverage across 95%of theAPOA5
target region on 1,385MI cases and 1,499 controls. Paired-end readsweremapped
toNCBI build 37 using the BWAand SMALT aligners; variants were identified by
the GATK unified genotyper (v1.6.13) and annotated using SnpEff v2.0.5 and the
GRCh37.64 database.
For the CCHS/CIHDS study, lightscanner screening and re-sequencing were

performed. Genomic DNA was isolated from frozen whole blood (QiaAmp4 DNA
blood mini kit; QIAGEN, Hilden, Germany). Six PCR fragments were amplified
covering the three coding exons and adjacent splice-sites (approximately 20 base
pairs upstream and downstream each exon) ofAPOA5. Mutational analysis of the
PCR products was performed by high-resolution melting curve (HRM) analysis
using the Lightscanner system (Idaho Technology, Salt Lake City, Utah). PCR
fragments showing heteroduplex formation by HRM analysis were subsequently
sequenced on an ABI 3730 DNA analyser (Applied Biosystems, Foster City, CA).
Data processing, quality control and association analysis. After sequencing,
variants were annotated using SnpEff or Annovar45. For each study, only non-
synonymous SNVswithMAF,1%were analysed. Rare variant burden testingwas

performed using the T1 test. Meta-analysis was performed to combine evidence
across study specific P values using the sample size weighted Z-score method,
implemented in METAL. Association results and a listing of APOA5 mutations
discovered from sequencing are described inTable 1 and Supplementary Table 10.
P values for association between APOA5 mutation carrier status and lipid traits
were performedusing theMann–Whitney ranksum test. Results are shown in Sup-
plementary Table 12.
Methods for follow-up exome sequencing
Laboratory methods. We performed follow-up exome sequencing in additional
samples from three other studies. Sequencingwas performed at the Broad Institute,
using the same protocols described above for the NHLBI ESP Project.
Data processing, quality control and association analysis. Variant calling and
annotationswere performedas described above for theNHBLIESPEOMI.Quality
control of samples was performed using the following steps. To detectmismatched
samples, we calculated discordance rates between genotypes from exome sequenc-
ing with genotypes from array-based genotyping. We removed samples with dis-
cordance rate . 0.02. We tested for sample contamination using verifyBamID46,
which examines theproportionofnon-referencebases at reference sites.We removed
sampleswith FREEMIXorCHIPMIX scores.0.2. Furthermore, we removed out-
lier samples with toomany or too few SNVs (.700 or,5 singletons,.400 or,5
doubletons,.16,000 (.20,000 forAfrican) or,10,000 total SNVs), and thosewith
too high or low TS–TV (.4 or ,3) and heterozygosity (heterozygote to homo-
zygote non-reference ratio .6 or ,2). Finally, we removed samples with high
missingness (.0.1). In total, 202 samples were removed. For quality control of
variants, we removed SNVs and indels that had low recalibration scores after run-
ning GATK VariantRecalibrator. We also removed SNVs with low coverage (DP
,140,000 and quality over depth (QD),2) and high missingness (frequency of
missing genotypes .0.02). For quality control of indels, we removed indels that
had excessive strand bias (Fisher Strand.200), high proportion of alternate alleles
seen near the ends of reads (ReadPosRankSum ,220), deviation from Hardy–
Weinberg equilibrium (InbreedingCoeff,20.8) and low coverage (QD,3). Rare
variant association analysis was performed using EPACTS.We performed burden
of rare variant analysis using the Efficient Mixed-Model Association eXpedited
(EMMAX) Combined Multivariate and Collapsing (CMC) test47. This approach
uses a kinshipmatrix to take into account population structure.We restricted ana-
lyses to SNVs and indels with minor allele frequency,0.01. Furthermore, we re-
stricted analyses to three different sets of variants: (1) non-synonymous only; (2) a
deleterious set consisting of non-synonymous after excludingmissense alleles anno-
tated as benign by PolyPhen-2 HumDiv software; and (3) disruptive (nonsense,
indel frameshift, splice-site) mutations only.
Estimation of heritability explained by a burden of rare mutations in the
APOA5 and LDLR genes. We calculated the heritability explained by a burden
of raremutations in theAPOA5 andLDLR genes using the following assumptions.
We assumed that the alleles come from a mixture of two distributions: harmless
alleles, with no effect on the trait, and null alleles, which destroy the function of the
gene andhave an (constant) effect on the trait.We assumed different values for the
fraction of null alleles, a (our current expectation for most genes for a is around
one-third to one-half formissense alleles andherewe clumpmissense alleles together
with nonsense alleles, which should slightly increase a). The variance explained is
sensitive to this parameter. We assumed a liability-threshold model for disease,
with an underlying (un-observed) continuous trait representing risk for MI, and
MI occurring if risk is above a certain threshold. We assume all null alleles have
effectb (inunits of standarddeviations) on the liability scale.We assumeddifferent
values for the prevalence (denoted k) for early MI (3% to 5%). Results are some-
what sensitive to prevalence; higher prevalence will slightly increase heritability
estimates. Given the prevalence, the number of carriers in cases and controls gives
us the allele frequency in the population (which is very close to the allele frequency
in controls).
We fitted the effect size (b on liability scale) and alleles for different values of a

and k. Results for APOA5 are shown in Supplementary Table 11 and results for
LDLR are shown in Supplementary Table 19. For APOA5, b is moderate (up to
roughly one standard deviation), with variance explained between 0.08% and
0.17% of the total phenotypic variance (on the liability scale). If we assume the
heritability of MI is 50%, a burden of rare mutations in the APOA5 gene may
explain 0.16–0.34% of the heritability. For LDLR, for all values, variance explained
is between 0.13% and 0.32%of the total phenotypic variance (on the liability scale)
and 0.26–0.64% of the heritability.
Sample size extrapolations and power calculations for burden of rare variants.
We evaluated the sample size that is needed to reach genome-wide significance
levels (P5 2.53 1026) for the T1 test. Our calculations relied on the following
assumptions. We assumed that all allelic variants with population frequency less
than 1% are causal and have identical effect sizes. We also assumed that all alleles
with frequency greater than 1% were benign.
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Our calculations differentiate between the allele frequency of a SNV in our
exome samples with its true allele frequency in a population. The T1 test compares
the number of carriers of an allele for a SNVwith sample (rather than population)
allele frequency less than 1% among cases and controls. We considered three
factors when extrapolating to larger sample sizes. First, we assumed our sample
is comprised of 50% cases and 50% controls. As the prevalence of EOMI is esti-
mated to be 5%, the sample frequency of causal alleles is likely to be higher than the
population frequency. Second, some alleles with population frequency below 1%
may, by chance, have sampling frequency greater than 1% and therefore be excluded
from the test. Third, the true allele frequency of the SNVs in the population is
unknown. In contrast to earlierwork that reliedonpopulation geneticsmodelling48,
we provide an update on the power needed to detect rare variant signal after con-
sidering the three factors above. We calculated liberal and conservative estimates
for our sample size extrapolations and power calculations. The conservative esti-
mate was based on the estimate of the total population frequency of all causal
alleles (below1%) thatwould be unlikely to be excluded from theT1 test due to the
sampling frequencies exceeding 1%. Because allele frequency distribution is domi-
nated by rare alleles, for an allele with population frequency x̂, expected popu-
lation allele frequency is smaller than x.

(E xjx̂ð Þvx̂) ð1Þ
Therefore, the expected total population frequency of all alleles below frequency x
is smaller than the total sampling frequency of alleles below sampling frequency x̂.
However, setting x̂ at 1%would result in a liberal rather than conservative estimate
because alleles with population frequency below 1%may be excluded from the T1
test as having sampling frequency above 1%.This occurs due to oversampling cases
(our sample has 50% of cases at disease prevalence of 5%) and sampling variance.
For example, assuming only one causal allele per gene, the power of the T1 test is
maximal for the population allele frequency close to 0.5% for a sample of 1,000
cases and 1,000 controls. For a sample of 10,000 individuals, the chance that a risk
allele with population frequency of 0.5% would be excluded from the T1 test is
below 1023, making this threshold even more conservative. Therefore, for a con-
servative estimate, we have assumed that the total population frequencyof all causal
alleles per gene would equal the total sampling frequency of alleles below 0.5% in
theESP sample.Our liberal estimate assumed that all causal alleleswill be included
in the T1 test. We assumed that the total population frequency of all causal alleles
per gene would equal the total sampling frequency of alleles below 1% in the ESP
sample.
Once we extrapolated the number of mutation carriers to 20,000 samples, we

then performed power calculations to see howmany samples would be needed to
reach a genome-wide significance level for the T1 test (P5 2.53 1026 after cor-
recting for 20,000 genes). Power calculations were performed by first sampling a
genotype at random from the pool of 20,000 simulated samples. Based on the T1
carrier status of the drawn sample, we simulated the phenotype based on a calcu-
lated probability. The phenotype was simulated based on a prevalence rate of 5%
for disease, carrier status of the random sample and assumed relative risk of 2.0 of
the mutation. For T1 carriers, the probability of being a case was calculated as rel-
ative risk (RR)ofT1carriermultipliedbyprevalence rateof disease (RR*prevalence

rate). For non-carriers, the probability of being a case was simply the prevalence
rate. The case-control ratio was 1:1.We performed sample size extrapolations for
geneswith varyingnumber ofT1mutations (25thpercentile,median and75thper-
centile of carriers with a T1 mutation for all genes discovered in the exome, Sup-
plementary Figs 29–31).
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