
Listen to this manuscript’s

audio summary by

JACC Editor-in-Chief

Dr. Valentin Fuster.

J O U R N A L O F T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y V O L . 6 7 , N O . 2 2 , 2 0 1 6

ª 2 0 1 6 B Y T H E A M E R I C A N C O L L E G E O F C A R D I O L O G Y F O U N D A T I O N I S S N 0 7 3 5 - 1 0 9 7 / $ 3 6 . 0 0

P U B L I S H E D B Y E L S E V I E R h t t p : / / d x . d o i . o r g / 1 0 . 1 0 1 6 / j . j a c c . 2 0 1 6 . 0 3 . 5 2 0
Diagnostic Yield and Clinical Utility of
Sequencing Familial Hypercholesterolemia
Genes in Patients With
Severe Hypercholesterolemia

Amit V. Khera, MD,a,b Hong-Hee Won, PHD,c Gina M. Peloso, PHD,b,d Kim S. Lawson, MS,e Traci M. Bartz, MS,f

Xuan Deng, MSC,d Elisabeth M. van Leeuwen,g Pradeep Natarajan, MD, MMSC,a,b Connor A. Emdin, HBSC,b

Alexander G. Bick, PHD,b Alanna C. Morrison, PHD,e Jennifer A. Brody, BA,h Namrata Gupta, PHD,b

Akihiro Nomura, MD,b,i Thorsten Kessler, MD,j Stefano Duga, PHD,k Joshua C. Bis, PHD,h Cornelia M. van Duijn, PHD,g

L. Adrienne Cupples, PHD,d Bruce Psaty, MD, PHD,h,l Daniel J. Rader, MD,m John Danesh, DPHIL,n

Heribert Schunkert, MD,j Ruth McPherson, MD,o Martin Farrall, MD,p Hugh Watkins, MD, PHD,p Eric Lander, PHD,b

James G. Wilson, MD,q Adolfo Correa, MD, PHD,r Eric Boerwinkle, PHD,e Piera Angelica Merlini, MD,s

Diego Ardissino, MD,t Danish Saleheen, MBBS, PHD,u Stacey Gabriel, PHD,b Sekar Kathiresan, MDa,b
ABSTRACT
Fro

Ho

bri

Me

Ma

Ho

Era
BACKGROUND Approximately 7% of American adults have severe hypercholesterolemia (untreated low-density

lipoprotein [LDL] cholesterol $190 mg/dl), which may be due to familial hypercholesterolemia (FH). Lifelong LDL

cholesterol elevations in FH mutation carriers may confer coronary artery disease (CAD) risk beyond that captured

by a single LDL cholesterol measurement.

OBJECTIVES This study assessed the prevalence of an FH mutation among those with severe hypercholesterolemia and

determined whether CAD risk varies according to mutation status beyond the observed LDL cholesterol level.

METHODS Three genes causative for FH (LDLR, APOB, and PCSK9) were sequenced in 26,025 participants from 7 case-

control studies (5,540 CAD case subjects, 8,577 CAD-free control subjects) and 5 prospective cohort studies (11,908

participants). FH mutations included loss-of-function variants in LDLR, missense mutations in LDLR predicted to be

damaging, and variants linked to FH in ClinVar, a clinical genetics database.

RESULTS Among 20,485 CAD-free control and prospective cohort participants, 1,386 (6.7%) had LDL cholesterol

$190 mg/dl; of these, only 24 (1.7%) carried an FH mutation. Within any stratum of observed LDL cholesterol, risk of

CAD was higher among FH mutation carriers than noncarriers. Compared with a reference group with LDL cholesterol

<130 mg/dl and no mutation, participants with LDL cholesterol $190 mg/dl and no FH mutation had a 6-fold higher risk

for CAD (odds ratio: 6.0; 95% confidence interval: 5.2 to 6.9), whereas those with both LDL cholesterol $190 mg/dl

and an FH mutation demonstrated a 22-fold increased risk (odds ratio: 22.3; 95% confidence interval: 10.7 to 53.2). In an

analysis of participants with serial lipid measurements over many years, FH mutation carriers had higher cumulative

exposure to LDL cholesterol than noncarriers.

CONCLUSIONS Among participants with LDL cholesterol $190 mg/dl, gene sequencing identified an FH mutation

in <2%. However, for any observed LDL cholesterol, FH mutation carriers had substantially increased risk for CAD.

(J Am Coll Cardiol 2016;67:2578–89) © 2016 by the American College of Cardiology Foundation.
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S evere hypercholesterolemia, defined as having
a low-density lipoprotein (LDL) cholesterol
level $190 mg/dl, is a treatable risk factor for

coronary artery disease (CAD) (1,2). Current treatment
guidelines place particular emphasis on intensive
life-style and pharmacological therapy in this popula-
tion (3). One cause of severely elevated LDL choles-
terol is familial hypercholesterolemia (FH), an
autosomal dominant monogenic disorder linked to
impaired hepatic clearance of LDL cholesterol parti-
cles (4). Patients with LDL cholesterol $190 mg/dl
are often assumed to have FH, but this may not be
the case. Large-scale gene sequencing provides an op-
portunity to clarify the diagnostic yield and clinical
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which may enrich for monogenic causes. In contrast,
if ascertainment from the general population is solely
on the basis of elevated LDL cholesterol, the extent to
which FH mutations contribute to severe hyper-
cholesterolemia is unknown. Such knowledge may
inform the design and effectiveness of universal FH
screening proposals (17,18).

Knowledge of FH mutation status could also pro-
vide CAD risk information beyond that from a single
LDL cholesterol measurement (4,18). An FH mutation
could lead to higher cumulative exposure to LDL
cholesterol levels over a lifetime; as such, within any
stratum of LDL cholesterol, the risk of CAD might be
greater if the LDL elevation is due to a monogenic
mutation versus other causes. The extent to which
the presence of a causal FH mutation modulates CAD
risk is uncertain.

We analyzed gene sequences of 3 FH genes (low-
density lipoprotein receptor [LDLR], apolipoprotein B
[APOB], and proprotein convertase subtilisin/kexin
type 9 [PCSK9]) in 12 distinct cohorts, including
26,025 participants, to determine: 1) the diagnostic
yield of gene sequencing to identify an FH mutation
in severely hypercholesterolemic participants; and
2) the clinical impact of an FH mutation on CAD risk
within any given stratum of LDL cholesterol levels.

METHODS

STUDY POPULATIONS. Whole-exome sequencing
was performed in 7 previously described CAD
case-control cohorts of the Myocardial Infarction Ge-
netics Consortium (Online Table 1), including the
Italian Atherosclerosis, Thrombosis, and Vascular
(BroadGO) and RC2 HL102926 (SeattleGO). Exome sequencing in ATVB, PR
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cholesterol treatment guidelines (3).
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(20). Population-based cohort sequencing was per-
formed at the Baylor College of Medicine (Houston,
Texas) for the ARIC, CHS, and FHS cohorts and at
Erasmus Medical Center (Rotterdam, Netherlands) for
the Rotterdam Baseline Study and Erasmus Rucphen
Family Study cohorts. Additional sequencing meth-
odology details are available in the Online Appendix.

GENETIC VARIANT ANNOTATION. Three classes of
genetic variants were aggregated with respect to as-
sociation with FH: 1) loss-of-function variants in
LDLR: single-base changes that introduce a stop
codon, leading to premature truncation of a protein
(nonsense), insertions or deletions (indels) of deox-
yribonucleic acid (DNA) that scramble protein trans-
lation beyond the variant site (frameshift), or point
mutations at sites of pre-messenger ribonucleic acid
splicing that alter the splicing process (splice-site); 2)
missense variants in LDLR predicted to be deleterious
by each of 5 in silico prediction algorithms (LRT score,
MutationTaster, PolyPhen-2 HumDiv, PolyPhen-2
HumVar, and Sorting Intolerant From Tolerant
[SIFT]), as described previously (20,30); and 3) vari-
ants in LDLR, APOB, or PCSK9 annotated as “patho-
genic” or “likely pathogenic” in ClinVar, a publicly
available archive of genetic variations associated with
clinical phenotypes (31). Additional sensitivity ana-
lyses aggregated all rare (allele frequency <0.01)
missense mutations in LDLR; exon 26 of APOB, which
encodes key components of apolipoprotein B binding
to the LDL receptor and harbors the majority of APOB
variants linked to FH (32); and those that produce a
change in PCSK9 at an amino acid associated with FH
in ClinVar. Rare synonymous variants at these same
locations were included as a negative control. Soft-
ware used to annotate observed variants included
Variant Effect Predictor (version 77) (33) and the
associated LOFTEE plugin (34), as well as the dbNSFP
database (version 3.0b1) (35).

LONGITUDINAL ANALYSIS OF LDL CHOLESTEROL

EXPOSURE. Individuals with an FH mutation and
LDL cholesterol $130 mg/dl were identified in the
ARIC and FHS Offspring Study cohorts. LDL choles-
terol values were adjusted in those who reported
lipid-lowering therapy by dividing measured values
by 0.7. Mean LDL cholesterol exposure was calculated
as cumulative exposure, determined via area under
the curve analysis, divided by length of follow-up.
Twenty-seven FH mutation carriers met the inclu-
sion criteria described previously and were matched
1:1 to a mutation-negative control according to age
(within 10 years), sex, statin use at time of last visit,
and similar LDL cholesterol at last visit (within
10 mg/dl). A match was available in 25 of 27
participants (93%). Mean LDL cholesterol exposure
was compared among those with and without FH
mutation using a paired Student t test.

STATISTICAL ANALYSIS. The impact of aggregations
of genetic variants on levels of LDL cholesterol was
assessed with linear regression, with adjustments for
age, age squared, sex, cohort, and the first 5 principal
components of ancestry. Odds ratios (ORs) for CAD
were calculated by use of logistic regression with
adjustment for sex, cohort, and the first 5 principal
components of ancestry. In analyses conducted on
ordinal strata of LDL cholesterol, participants with
LDL cholesterol <130 mg/dl and no mutation linked to
FH served as the reference group.

Analyses were performed with R version 3.2.2
software (R Project for Statistical Computing, Vienna,
Austria). Figures were created with the ggplot2
package within R (36).

RESULTS

Within the Myocardial Infarction Genetics Consortium
CAD case-control cohorts, a total of 14,117 participants
with both LDL cholesterol level and sequence data for
FH genes were available for analysis: 8,577 CAD-free
control subjects and 5,540 CAD case subjects (Online
Table 3). The study population included 10,421 men
(74% of participants) with a mean age of 53 � 14 years.
Proportions of self-identified race were 47%, 46%, and
7% for white, South Asian, and black, respectively.
Forty-seven percent of study participants had a his-
tory of hypertension, 27% had a history of diabetes
mellitus, 34% were current smokers, and 14% were
taking lipid-lowering medications.

Sequencing identified 86 variants linked to FH
because they led to loss of function in LDLR, were
missense mutations in LDLR predicted to be damaging
by each of 5 computer prediction algorithms, or were a
variant in LDLR, APOB, or PCSK9 previously linked to
FH in the ClinVar genetics database. These included
13 premature stop (“nonsense”) codons, 6 splice
acceptor/donor variants, 4 frameshift mutations, and
63 missense mutations (Online Table 4).

Mutations linked to FH were found in 164 partici-
pants, including 48 CAD-free control subjects
(OR: 0.6%; 95% confidence interval [CI]: 0.4% to 0.7%)
and 116 CAD case subjects (OR: 2.1%; 95% CI: 1.7% to
2.5%) (Online Table 5). The mutation was located in
LDLR for 141 participants (86%), in APOB for 22 (13%),
and in PCSK9 for 1 (0.6%) (Online Table 4). Only 1
homozygote (or compound heterozygote) participant
was identified; a 33-year-old patient with LDL
cholesterol of 539 mg/dl and CAD was homozygous for
a p.Q33* premature stop codon in LDLR.
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TABLE 1 Prevalence of an FH Mutation Among Participants With Severe

Hypercholesterolemia (LDL Cholesterol $190 mg/dl) in CAD-Free Control Subjects and

Population-Based Cohort Studies

LDL Cholesterol
$190 mg/dl
(% of Cohort)

FH Mutation
(% Participants With

LDL Cholesterol
$190 mg/dl)

Control subjects of the MIGen Consortium

Atherosclerosis, Thrombosis, and Vascular
Biology Italian Study (N ¼ 1,050)

44 (4.0) 1 (2.3)

Exome Sequencing Project; Early-Onset Myocardial
Infarction (N ¼ 1,213)

160 (13.0) 3 (1.9)

Jackson Heart Study (N ¼ 599) 26 (4.0) 1 (3.8)

Munich Myocardial Infarction Study (N ¼ 272) 15 (6.0) 0 (0.0)

Ottawa Heart Study (N ¼ 889) 59 (7.0) 0 (0.0)

Precocious Coronary Artery Disease (N ¼ 870) 36 (4.0) 1 (2.8)

Pakistani Risk of Myocardial Infarction
Study (N ¼ 3,684)

90 (2.0) 2 (2.2)

Total (N ¼ 8,577) 430 (5.0) 8 (1.9)

CHARGE Consortium

Atherosclerosis Risk in Communities Study
(N ¼ 7,959)

657 (8.0) 12 (1.8)

Cardiovascular Health Study (N ¼ 732) 47 (4.0) 1 (2.1)

Framingham Heart Study (N ¼ 1,175) 38 (5.0) 2 (5.3)

Rotterdam Baseline Study (N ¼ 794) 99 (12.0) 0 (0.0)

Erasmus Rucphen Family Study (N ¼ 1,248) 115 (9.0) 1 (0.9)

Total (N ¼ 11,908) 956 (8.0) 16 (1.7)

Combined MIGen Controls þ CHARGE (N ¼ 20,485) 1,386 (7.0) 24 (1.7)

Values are n (%).

CAD ¼ coronary artery disease; CHARGE ¼ Cohorts for Heart and Aging Research in Genomic Epidemiology;
FH ¼ familial hypercholesterolemia; LDL ¼ low-density lipoprotein; MIGen ¼ Myocardial Infarction Genetics.
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DIAGNOSTIC YIELD OF GENE SEQUENCING IN

SEVERE HYPERCHOLESTEROLEMIA. Among 8,577
CAD-free control participants from the Myocardial
Infarction Genetics Consortium cohorts, LDL choles-
terol approximated a normal distribution (Online
Figure 1). The prevalence of an FH mutation
increased across categories of LDL cholesterol levels
(p < 0.001) (Online Figure 2). Of 8,577 control par-
ticipants, 430 (5% of control sample) had LDL
cholesterol $190 mg/dl, and only 8 of these carried an
FH mutation (OR: 1.9%; 95% CI: 0.9% to 3.8%)
(Table 1, Central Illustration).

This prevalence estimate was replicated in 11,908
participants from 5 prospective cohort studies of the
CHARGE consortium: 956 (8%) had LDL cholesterol
>190 mg/dl, and of these, 16 (OR: 1.7%; 95% CI: 1.0%
to 2.8%) harbored an FH mutation. Across the 12
studies (n ¼ 20,485), 1,386 participants (7%) dis-
played LDL cholesterol $190 mg/dl, of whom
24 (1.7%) carried an FH mutation (Table 1).
CLINICAL IMPACT OF FH MUTATION IDENTIFICATION ON

CAD RISK. In the Myocardial Infarction Genetics
Consortium case-control studies, the presence of
an FH mutation was associated with a 50 mg/dl
(95% CI: 44 to 57 mg/dl) increase in LDL cholesterol
and a 3.8-fold (95% CI: 2.6 to 5.4) increase in odds of
CAD. These effects were most pronounced in those
with loss-of-function mutations in LDLR (Figure 1).
Average LDL cholesterol was 190 mg/dl in those with
an FH mutation, and 73 of 164 mutation carriers (45%)
had LDL cholesterol $190 mg/dl. However, despite
the observed large effect on average levels, a wide
spectrum of circulating LDL cholesterol concentra-
tions was noted in those who were mutation positive
(Figure 2). Forty-four of 164 (27%) mutation carriers
had an observed LDL cholesterol level <130 mg/dl,
which reflects incomplete penetrance. An aggregation
of all rare missense mutations had a modest impact
on both LDL cholesterol and CAD risk. As expected,
synonymous mutations, which do not change the
amino acid sequence, had no effect on either param-
eter (Figure 1). FH mutations were also associated
with a nominally significant reduction in high-density
lipoprotein cholesterol (�1.9 mg/dl; 95% CI: �3.7
to �0.1; p ¼ 0.04) but not with circulating tri-
glycerides (p ¼ 0.36).

Within the Myocardial Infarction Genetics Con-
sortium case-control cohort populations, those with
an FH mutation were at higher risk of CAD than
those without a mutation (Table 2) (p value for
difference ¼ 0.001). For participants with both LDL
cholesterol $190 mg/dl and an FH mutation, the
odds of CAD were increased 22-fold (OR: 22.3;
95% CI: 10.7 to 53.2) compared with those with LDL
cholesterol <130 mg/dl and no mutation. For partici-
pants with LDL cholesterol $190 mg/dl and no
FH mutation, odds of CAD were increased 6-fold
(OR: 6.0; 95% CI: 5.2 to 6.9) compared with the same
reference group. This difference persisted after addi-
tional adjustment for measured LDL cholesterol level
(p ¼ 0.02).

Separation of the population into clinically rele-
vant categories of LDL cholesterol levels demon-
strated trends toward higher risk in those with an FH
mutation within each stratum (Central Illustration,
Online Table 6). The impact of an FH mutation was
similar across strata of LDL cholesterol levels (p value
for interaction ¼ 0.51). Within the subgroup of par-
ticipants with LDL cholesterol in the$190 to 220mg/dl
range, those with a mutation had 17-fold increased
CAD risk versus 5-fold for those without a mutation.
This was despite similar observed LDL cholesterol
levels in this stratum (mean LDL cholesterol 205 mg/dl
in thosewith an FHmutation versus 203mg/dl in those
without; p value for difference ¼ 0.22).
CUMULATIVE LDL CHOLESTEROL EXPOSURE

ACCORDING TO FH MUTATION STATUS. For any
given observed LDL cholesterol level, those harboring
a mutation might have a higher average lifetime LDL

http://dx.doi.org/10.1016/j.jacc.2016.03.520
http://dx.doi.org/10.1016/j.jacc.2016.03.520
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CENTRAL ILLUSTRATION Sequencing Familial Hypercholesterolemia Genes in Severe
Hypercholesterolemia: Prevalence and Impact

Khera, A.V. et al. J Am Coll Cardiol. 2016;67(22):2578–89.

(A) Prevalence of a familial hypercholesterolemia (FH) mutation among severely hypercholesterolemic participants. (B) Risk of coronary artery disease

(CAD) across low-density lipoprotein (LDL) cholesterol and FH mutation status categories. Odds ratios for CAD were calculated via logistic regression with

adjustment for sex, cohort, and principal components of ancestry relative to a reference category of LDL cholesterol <130 mg/dl without an FH mutation.

Counts of CAD-free control subjects versus CAD case subjects in each category are provided in Online Table 6. The p value for mutation carriers versus

noncarriers across strata of LDL cholesterol was <0.0001. The p-interaction between LDL cholesterol category and mutation status was 0.51.
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FIGURE 1 Impact of FH, Rare Missense Mutations, and Rare Synonymous Mutations on LDL Cholesterol and CAD
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For each class of variants, the number of participants within the 14,117 participants of the Myocardial Infarction Genetics Consortium case-

control studies and percentages of case subjects with coronary artery disease (CAD) and CAD-free control subjects is provided. Numbers of

participants within each mutation category sum to more than the overall familial hypercholesterolemia (FH) mutation numbers because of

overlap across variant classification. Increase in low-density lipoprotein (LDL) cholesterol values determined via linear regression with

adjustment for age, age squared, sex, cohort, and principal components of ancestry. Odds ratios (ORs) for CAD were calculated via logistic

regression with adjustment for sex, cohort, and principal components of ancestry. CI ¼ confidence interval.
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cholesterol exposure than those who do not harbor a
mutation; this could explain the higher CAD risk
among mutation carriers. We tested this hypothesis
using 2 prospective cohort studies, ARIC and the FHS
Offspring Study, in which sequencing data and serial
measurements of LDL cholesterol were available. We
identified 25 participants with an FH mutation and
LDL cholesterol $130 mg/dl. Mean LDL cholesterol at
time of last study visit was 185 mg/dl. Compared with
matched noncarriers with similar LDL cholesterol at
the last visit, participants with an FH mutation had a
17 mg/dl (95% CI: 5 to 29 mg/dl; p ¼ 0.007) higher
average LDL cholesterol exposure in the years pre-
ceding the last visit (Figure 3, Online Table 7).

DISCUSSION

Among 20,485 multiethnic participants from 12
studies, we found that 1,386 (7%) had severe hyper-
cholesterolemia (LDL cholesterol $190 mg/dl), and
only a small fraction (<2%) of those also carried an FH
mutation. However, within any stratum of LDL
cholesterol, those who carried an FH mutation were
at substantially higher risk for CAD than those who

http://dx.doi.org/10.1016/j.jacc.2016.03.520


FIGURE 2 LDL Cholesterol Values According to FH Mutation Status
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The distribution of LDL cholesterol values according to FH mutation status among the

Myocardial Infarction Genetics Consortium studies is displayed. LDL cholesterol values

were higher in FH mutation carriers (N ¼ 164) than in noncarriers (N ¼ 13,954; p < 0.001).

Abbreviations as in Figure 1.
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did not. This increased CAD risk among mutation
carriers was explained at least in part by a greater
cumulative lifetime exposure to LDL cholesterol.

These results permit several conclusions. First, FH
mutations explain only a small fraction of severe
hypercholesterolemia in the population. Previous
reports noted a substantially higher rate of mutation
detection in those with clinically suspected FH,
ascertained on the basis of features (e.g., family his-
tory, physical examination, or severe hypercholes-
terolemia at a young age) that enrich for a monogenic
origin (5–16). Here, we address a scientific question
(what fraction of severely hypercholesterolemic sub-
jects carry a mutation in any of 3 genes causal for FH?)
that is distinct from these earlier seminal reports.
When participants were ascertained solely on the
basis of a single elevated LDL cholesterol level, we
identified an FH mutation in fewer than 2% of
severely hypercholesterolemic subjects. These
sequencing results are broadly consistent with those
of a recent study of 98,098 subjects from the
Copenhagen General Population Study in which
genotyping of the 4 most common FH mutations was
used to extrapolate overall FH mutation prevalence.
In that Danish study, of 5,332 subjects with LDL
cholesterol $5 mmol/l (193 mg/dl), fewer than 5%
were predicted to harbor an FH mutation (28).

If not a monogenic mutation in the 3 FH genes, what
might be the cause of elevated LDL cholesterol in the
remaining >95% of participants with severe hyper-
cholesterolemia? Possibilities include polygenic
hypercholesterolemia, life-style factors, or a combi-
nation of these. For example, subjects in the top
quartile of a polygenic LDL cholesterol gene score
composed of 95 common variants were 13-fold more
likely to have high LDL cholesterol (37). Similarly,
subjects in the top decile of a LDL cholesterol gene
score composed of 12 common variants were 4.2-fold
more likely to have LDL $190 mg/dl in the U.K.
Whitehall II study (38). Future genetic studies might
identify additional causal variants, genes beyond
those considered in this study, or large-effect regula-
tory variants that underlie severe hypercholesterole-
mia. Other nongenetic explanations for severe LDL
cholesterol elevations include secondary causes (e.g.,
hypothyroidism or nephrotic syndrome), life-style
factors such as dietary fat, or some combination
of these.

Second, within any stratum of a single observed
LDL cholesterol level, CAD risk was higher in those
with an FH mutation than in those without. This
novel finding reinforces the potential utility of ge-
netic testing to provide risk information beyond the
LDL cholesterol level. We analyzed 25 matched
pairs of participants with similarly elevated LDL
cholesterol levels at the time of ascertainment and
found a higher cumulative exposure to LDL choles-
terol in those with an FH mutation. These data sup-
port the hypothesis that an FH mutation, present
since birth, increases CAD risk via lifelong exposure
to high LDL cholesterol (39). By contrast, an isolated
elevation in LDL cholesterol in those without a ge-
netic predisposition might reflect a time-limited
exposure related to a current environmental pertur-
bation or a value that is more likely to regress
toward the mean in the future. Future studies might
identify additional metabolic parameters, such as
increased lipoprotein(a) levels (40), that also
contribute to the excess CAD risk noted in those with
an FH mutation.

Finally, these data contribute to ongoing discus-
sion regarding how to define FH. Classically, FH re-
fers to elevated LDL cholesterol caused by a single
mutation in any of several genes segregating in an
autosomal dominant manner. Alternate approaches
to 2 features, LDL cholesterol threshold and mutation
definition, affect FH prevalence estimates (Table 3).
An approach that includes all participants with un-
treated LDL cholesterol $190 mg/dl (i.e., without an
FH mutation requirement) would combine nonge-
netic and genetic causes and classify approximately
7% of the U.S. adult population as having FH. An
alternative possibility is to withhold an LDL choles-
terol threshold and require only a stringent mutation
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TABLE 2 Risk of CAD in Those With Elevated LDL Cholesterol ($190 mg/dl) According to FH Mutation Status in CAD Case-Control Studies

Total N
(CAD-Free Controls/

CAD Cases)
OR for CAD
(95% CI)*

p Value
(FH Mutation þ vs. –)†

LDL
Cholesterol-Adjusted
OR for CAD (95% CI)*

p Value
(FH Mutation þ vs. –)†

LDL cholesterol $190 mg/dl

FH mutation negative 1,264 (422/842) 6.0 (5.2–6.9)
p < 0.001

0.001 1.6 (1.3–2.1)
p < 0.001

0.02

FH mutation positive 73 (8/65) 22.3 (10.7–53.2)
p < 0.001

4.2 (1.9–10.4)
p < 0.001

LDL cholesterol <130 mg/dl and
FH mutation negative

7,485 (5,175/2,310) Reference Reference

Values are N (n/n) unless otherwise indicated. OR for CAD was calculated via logistic regression with adjustment for sex, cohort, and principal components of ancestry relative
to a reference category of LDL cholesterol<130 mg/dl without an FH mutation. OR values with and without additional adjustment for observed LDL cholesterol, expressed as a
continuous variable, are provided. *p value for difference in OR compared with reference category. †p value for difference in OR between FH mutation positive and FH mutation
negative among participants with LDL cholesterol $190 mg/dl.

CI ¼ confidence interval; OR ¼ odds ratio; other abbreviations as in Table 1.
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definition; in such an analysis of 20,485 participants,
we identified an FH mutation in 97 participants
(1 in 211). This estimate is nearly identical to a
population-based analysis in the Copenhagen General
ive LDL Cholesterol Exposure in FH Mutation Carriers Compared With Non
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prevalence in our study declines (1 in 301 with an LDL
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25 20 15 10 5 0
Years Since Ascertainment

Framingham Heart Study Offspring

H Mutation
Yes (n=7)
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tation status. A matched-pairs Student t test demonstrated higher

s as in Figure 1.



TABLE 3 Prevalence of FH According to Different LDL Cholesterol Thresholds and

Mutation Classification Schemes

LDL Cholesterol Criteria Mutation Criterion Prevalence of FH

LDL cholesterol $190 mg/dl No mutation required 1,386 of 20,485 (1 in 14)

No threshold requirement �LDLR loss-of-function variant; or
�LDLR predicted damaging rare

missense variant; or
�LDLR, APOB, PCSK9 variant

pathogenic in ClinVar

97 of 20,485 (1 in 211)

LDL cholesterol $190 mg/dl �LDLR loss-of-function variant; or
�any rare LDLR missense variant

80 of 20,485 (1 in 256)

LDL cholesterol $130 mg/dl �LDLR loss-of-function variant: or
�LDLR predicted damaging rare,

missense variant; or
�LDLR, APOB, PCSK9 variant

pathogenic in ClinVar

68 of 20,485 (1 in 301)

No threshold requirement �LDLR loss-of-function variant; or
�LDLR predicted damaging rare

missense variant

60 of 20,485 (1 in 341)

LDL cholesterol $190 mg/dl �LDLR loss-of-function variant; or
�LDLR predicted damaging rare

missense variant; or
�LDLR, APOB, PCSK9 variant

pathogenic in ClinVar

24 of 20,485 (1 in 853)

For each classification scheme, the number of participants who met the criteria among a total of 20,485 par-
ticipants (CAD-free control subjects of the Myocardial Infarction Genetics Consortium combined with CHARGE
Consortium participants) is provided. Loss-of-function variants were defined as single-base changes that intro-
duce a stop codon that leads to premature truncation of a protein (nonsense), insertions or deletions (indels) of
DNA that scramble protein translation beyond the variant site (frameshift), or point mutations at sites of pre-
messenger ribonucleic acid splicing that alter the splicing process (splice site). Predicted damaging variants
refer to those LDLR predicted to be deleterious by each of 5 in silico prediction algorithms (LRT score, Muta-
tionTaster, PolyPhen-2 HumDiv, PolyPhen-2 HumVar, and Sorting Intolerant From Tolerant [SIFT]). Rare variants
refers to those with minor allele frequency <1% in the sequenced population.

APOB ¼ apolipoprotein B; LDLR ¼ low-density lipoprotein receptor; PCSK9 ¼ proprotein convertase subtilisin/
kexin type 9; other abbreviations as in Tables 1 and 2.
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threshold $130 mg/dl and 1 in 853 with an LDL
threshold $190 mg/dl).

With regard to defining an FH mutation, all sche-
mata agree on the inclusion of loss-of-function alleles
in LDLR, but they differ on how to handle missense
mutations. For missense mutations, we applied a
rigorous threshold, requiring that the mutation be
designated as damaging by each of 5 computer pre-
diction algorithms or be previously annotated as
pathogenic in the ClinVar clinical genetics database.
A key advantage of this approach is that it ensures
that classification is both fully reproducible and
generalizable to genes beyond those related to FH.

When routine genetic testing is not available,
clinical scoring systems, such as the Dutch Lipid
Clinical Network, Simon Broome, and MEDPED
criteria, have been developed to approximate FH
status (4). Ongoing collaborative efforts on how to
optimally incorporate population-based genetic
sequencing data into existing frameworks for the
clinical diagnosis of FH will be critically important.

STUDY LIMITATIONS. First, our data did not permit
us to stratify participants by family history or physical
examination features, as suggested by the Dutch
Lipid Clinic Network and Simon Broome criteria
(41,42). Second, we accounted for an estimated 30%
reduction in LDL cholesterol in those undergoing
lipid-lowering therapy, as previously implemented
(26–28). This approach might imperfectly estimate
untreated LDL cholesterol, given heterogeneity in
drug selection, dosing, and response and variability
across baseline LDL cholesterol levels or mutation
status. However, a sensitivity analysis limited to
Myocardial Infarction Genetics Consortium cohort
participants not undergoing lipid-lowering therapy
similarly noted a pronounced difference in risk
among severely hypercholesterolemic participants
stratified by mutation status (Online Table 8). Third,
current exome-sequencing techniques inadequately
capture structural and copy-number genetic varia-
tion, and as such, some FH mutations might have
been missed. Fourth, our approach to annotating
missense variants using prediction algorithms and
the ClinVar database might have led to misclassifica-
tion in some cases. Additional studies that implement
large-scale functional screens of identified variants or
that pool phenotypes across additional studies could
provide additional refinement of pathogenicity an-
notations. Lastly, FH mutation prevalence was
determined in CAD-free control subjects and
population-based cohorts. These participants sur-
vived to middle age, and few had clinically manifest
CAD, which raises the possibility of survivorship or
selection bias. Our case-control population was
enriched for participants with premature CAD; effect
estimates of mutations on coronary risk might be
different in patients with later disease onset.

CONCLUSIONS

Genetic sequencing identified an FH mutation in only
a small proportion of severely hypercholesterolemic
participants; however, for any given observed LDL
cholesterol level, risk for CAD was substantially
higher in FH mutation carriers than in noncarriers,
which was likely related in large part to higher life-
long exposure to atherogenic LDL particles. A primary
goal of precision medicine is to use molecular di-
agnostics to identify a small subset of the population
at increased disease risk in which to deliver an
intervention. Systematic efforts to identify and treat
severely hypercholesterolemic patients who carry an
FH mutation could represent one such opportunity.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: For any

given observed LDL cholesterol level, carriers of a familial

hypercholesterolemia mutation are at substantially

increased risk of coronary disease compared with non-

carriers, which is likely related to increased lifelong

exposure to LDL cholesterol.

TRANSLATIONAL OUTLOOK: Additional research is

needed to understand whether genetic testing can prove

clinically useful in guiding the treatment of people with

severe hypercholesterolemia to reduce risk of CAD.
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