To evaluate stability and integrity of bi-layer and three-layer collagen-hydroxyapatite (C-HA) osteochondral scaffolds in a human cadaveric knee exposed to continuous passive motion (CPM) with and without loading and the role of added fibrin glue to improve the press-fit fixation of C-HA scaffolds.Osteochondral lesions (2.0 × 1.5 cm) were chiseled out on both condyles and trochlea in eight human cadaveric knees. A total of 24 bi-layer (5 mm, four in each condyle) or three-layer C-HA scaffolds (8 mm, eight in the trochlea, four in each condyle) were first press-fit implanted and underwent testing with CPM, 90 cycles, 0°-90°. The second set of 24 scaffolds was implanted in cleaned lesions with the addition of fibrin glue. Two knees with fibrin glue fixation were additionally exposed to 15 kg loading, with 30 cycles of CPM, 0°-30°. Then, the knees were reopened and the scaffolds were evaluated using semi-quantitative Drobnic and modified Bekkers scores.All but two scaffolds remained in the lesions site throughout CPM. Two implants failed: both were bi-layer osteochondral scaffolds, press-fit implanted at the lateral femoral condyle (LFC). A statistically significant difference was obtained between press-fit and fibrin glue implants with both Drobnic (2.9 ± 0.7 vs 4.3 ± 0.1, P < 0.0005) and Bekkers (3.3 ± 1.0 vs 5.0 ± 0.1, P < 0.0005) scores. Additional knee loading did not affect fibrin glue scaffold fixation or integrity.This cadaveric study showed fibrin glue notably improved bi-layer or three-layer C-HA scaffold press-fit fixation regardless of lesion location. It is therefore recommended that fibrin glue be used during surgery to improve early post-operative C-HA scaffold stability and integrity.

Fibrin glue improves osteochondral scaffold fixation: study on the human cadaveric knee exposed to continuous passive motion.

E. Kon;M. Marcacci
2014-01-01

Abstract

To evaluate stability and integrity of bi-layer and three-layer collagen-hydroxyapatite (C-HA) osteochondral scaffolds in a human cadaveric knee exposed to continuous passive motion (CPM) with and without loading and the role of added fibrin glue to improve the press-fit fixation of C-HA scaffolds.Osteochondral lesions (2.0 × 1.5 cm) were chiseled out on both condyles and trochlea in eight human cadaveric knees. A total of 24 bi-layer (5 mm, four in each condyle) or three-layer C-HA scaffolds (8 mm, eight in the trochlea, four in each condyle) were first press-fit implanted and underwent testing with CPM, 90 cycles, 0°-90°. The second set of 24 scaffolds was implanted in cleaned lesions with the addition of fibrin glue. Two knees with fibrin glue fixation were additionally exposed to 15 kg loading, with 30 cycles of CPM, 0°-30°. Then, the knees were reopened and the scaffolds were evaluated using semi-quantitative Drobnic and modified Bekkers scores.All but two scaffolds remained in the lesions site throughout CPM. Two implants failed: both were bi-layer osteochondral scaffolds, press-fit implanted at the lateral femoral condyle (LFC). A statistically significant difference was obtained between press-fit and fibrin glue implants with both Drobnic (2.9 ± 0.7 vs 4.3 ± 0.1, P < 0.0005) and Bekkers (3.3 ± 1.0 vs 5.0 ± 0.1, P < 0.0005) scores. Additional knee loading did not affect fibrin glue scaffold fixation or integrity.This cadaveric study showed fibrin glue notably improved bi-layer or three-layer C-HA scaffold press-fit fixation regardless of lesion location. It is therefore recommended that fibrin glue be used during surgery to improve early post-operative C-HA scaffold stability and integrity.
2014
Biocompatible Materials; therapeutic use; Cadaver; Cartilage; Articular; surgery; Chondrocytes; Collagen; Durapatite; Fibrin Tissue Adhesive; Humans; Knee Joint; Movement; Prosthesis Failure; Range of Motion; Stress; Mechanical; Tissue Adhesives; Tissue Scaffolds; standards; Treatment Outcome
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/10062
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 32
social impact