Purpose To compare liver MRI with AIR Recon Deep Learning (TM)(ARDL) algorithm applied and turned-off (NON-DL) with conventional high-resolution acquisition (NAiVE) sequences, in terms of quantitative and qualitative image analysis and scanning time. Material and methods This prospective study included fifty consecutive volunteers (31 female, mean age 55.5 +/- 20 years) from September to November 2021. 1.5 T MRI was performed and included three sets of images: axial single-shot fast spin-echo (SSFSE) T2 images, diffusion-weighted images(DWI) and apparent diffusion coefficient(ADC) maps acquired with both ARDL and NAiVE protocol; the NON-DL images, were also assessed. Two radiologists in consensus drew fixed regions of interest in liver parenchyma to calculate signal-to-noise-ratio (SNR) and contrast to-noise-ratio (CNR). Subjective image quality was assessed by two other radiologists independently with a five-point Likert scale. Acquisition time was recorded. Results SSFSE T2 objective analysis showed higher SNR and CNR for ARDL vs NAiVE, ARDL vs NON-DL(all P < 0.013). Regarding DWI, no differences were found for SNR with ARDL vs NAiVE and, ARDL vs NON-DL (all P > 0.2517).CNR was higher for ARDL vs NON-DL(P = 0.0170), whereas no differences were found between ARDL and NAiVE(P = 1). No differences were observed for all three comparisons, in terms of SNR and CNR, for ADC maps (all P > 0.32). Qualitative analysis for all sequences showed better overall image quality for ARDL with lower truncation artifacts, higher sharpness and contrast (all P < 0.0070) with excellent inter-rater agreement (k >= 0.8143). Acquisition time was lower in ARDL sequences compared to NAiVE (SSFSE T2 = 19.08 +/- 2.5 s vs. 24.1 +/- 2 s and DWI = 207.3 +/- 54 s vs. 513.6 +/- 98.6 s, all P < 0.0001). Conclusion ARDL applied on upper abdomen showed overall better image quality and reduced scanning time compared with NAiVE protocol.

Artificial intelligence based image quality enhancement in liver MRI. a quantitative and qualitative evaluation

Laghi, Andrea
2022-01-01

Abstract

Purpose To compare liver MRI with AIR Recon Deep Learning (TM)(ARDL) algorithm applied and turned-off (NON-DL) with conventional high-resolution acquisition (NAiVE) sequences, in terms of quantitative and qualitative image analysis and scanning time. Material and methods This prospective study included fifty consecutive volunteers (31 female, mean age 55.5 +/- 20 years) from September to November 2021. 1.5 T MRI was performed and included three sets of images: axial single-shot fast spin-echo (SSFSE) T2 images, diffusion-weighted images(DWI) and apparent diffusion coefficient(ADC) maps acquired with both ARDL and NAiVE protocol; the NON-DL images, were also assessed. Two radiologists in consensus drew fixed regions of interest in liver parenchyma to calculate signal-to-noise-ratio (SNR) and contrast to-noise-ratio (CNR). Subjective image quality was assessed by two other radiologists independently with a five-point Likert scale. Acquisition time was recorded. Results SSFSE T2 objective analysis showed higher SNR and CNR for ARDL vs NAiVE, ARDL vs NON-DL(all P < 0.013). Regarding DWI, no differences were found for SNR with ARDL vs NAiVE and, ARDL vs NON-DL (all P > 0.2517).CNR was higher for ARDL vs NON-DL(P = 0.0170), whereas no differences were found between ARDL and NAiVE(P = 1). No differences were observed for all three comparisons, in terms of SNR and CNR, for ADC maps (all P > 0.32). Qualitative analysis for all sequences showed better overall image quality for ARDL with lower truncation artifacts, higher sharpness and contrast (all P < 0.0070) with excellent inter-rater agreement (k >= 0.8143). Acquisition time was lower in ARDL sequences compared to NAiVE (SSFSE T2 = 19.08 +/- 2.5 s vs. 24.1 +/- 2 s and DWI = 207.3 +/- 54 s vs. 513.6 +/- 98.6 s, all P < 0.0001). Conclusion ARDL applied on upper abdomen showed overall better image quality and reduced scanning time compared with NAiVE protocol.
2022
artificial intelligence
image quality
scanning time
sequences optimization
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/100963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 51
social impact