The 3′ untranslated regions (3′UTRs) of eukaryotic genes regulate mRNA stability, localization and translation. Here, we present evidence that large numbers of 3′UTRs in human, mouse and fly are also expressed separately from the associated protein-coding sequences to which they are normally linked, likely by post-transcriptional cleavage. Analysis of CAGE (capped analysis of gene expression), SAGE (serial analysis of gene expression) and cDNA libraries, as well as microarray expression profiles, demonstrate that the independent expression of 3′UTRs is a regulated and conserved genome-wide phenomenon. We characterize the expression of several 3′UTR-derived RNAs (uaRNAs) in detail in mouse embryos, showing by in situ hybridization that these transcripts are expressed in a cell- and subcellular-specific manner. Our results suggest that 3′UTR sequences can function not only in cis to regulate protein expression, but also intrinsically and independently in trans, likely as noncoding RNAs, a conclusion supported by a number of previous genetic studies. Our findings suggest novel functions for 3′UTRs, as well as caution in the use of 3′UTR sequence probes to analyze gene expression.

Expression of distinct RNAs from 3' untranslated regions. *Shared first authorship (TRM, DW,MED,GS). 2010 NAR Featured Article (top 5% of papers)

Solda' G;
2011-01-01

Abstract

The 3′ untranslated regions (3′UTRs) of eukaryotic genes regulate mRNA stability, localization and translation. Here, we present evidence that large numbers of 3′UTRs in human, mouse and fly are also expressed separately from the associated protein-coding sequences to which they are normally linked, likely by post-transcriptional cleavage. Analysis of CAGE (capped analysis of gene expression), SAGE (serial analysis of gene expression) and cDNA libraries, as well as microarray expression profiles, demonstrate that the independent expression of 3′UTRs is a regulated and conserved genome-wide phenomenon. We characterize the expression of several 3′UTR-derived RNAs (uaRNAs) in detail in mouse embryos, showing by in situ hybridization that these transcripts are expressed in a cell- and subcellular-specific manner. Our results suggest that 3′UTR sequences can function not only in cis to regulate protein expression, but also intrinsically and independently in trans, likely as noncoding RNAs, a conclusion supported by a number of previous genetic studies. Our findings suggest novel functions for 3′UTRs, as well as caution in the use of 3′UTR sequence probes to analyze gene expression.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/13146
Citazioni
  • ???jsp.display-item.citation.pmc??? 89
  • Scopus 167
  • ???jsp.display-item.citation.isi??? 151
social impact