Purpose: Oncogenic gene fusions involving the 3′ region of ROS1 kinase have been identified in various human cancers. In this study, we sought to characterize ROS1 fusion genes in non-small cell lung cancer (NSCLC) and establish the fusion proteins as drug targets. Experimental Design: An NSCLC tissue microarray (TMA) panel containing 447 samples was screened for ROS1 rearrangement by FISH. This assay was also used to screen patients with NSCLC. In positive samples, the identity of the fusion partner was determined through inverse PCR and reverse transcriptase PCR. In addition, the clinical efficacy of ROS1 inhibition was assessed by treating a ROS1-positive patient with crizotinib. The HCC78 cell line, which expresses the SLC34A2-ROS1 fusion, was treated with kinase inhibitors that have activity against ROS1. The effects of ROS1 inhibition on proliferation, cell-cycle progression, and cell signaling pathways were analyzed by MTS assay, flow cytometry, and Western blotting. Results: In the TMA panel, 5 of 428 (1.2%) evaluable samples were found to be positive for ROS1 rearrangement. In addition, 1 of 48 patients tested positive for rearrangement, and this patient showed tumor shrinkage upon treatment with crizotinib. The patient and one TMA sample displayed expression of the recently identified SDC4-ROS1fusion, whereas twoTMAsamples expressed theCD74-ROS1 fusion and two others expressed the SLC34A2-ROS1 fusion. In HCC78 cells, treatment with ROS1 inhibitors was antiproliferative and downregulated signaling pathways that are critical for growth and survival. Conclusions: ROS1 inhibition may be an effective treatment strategy for the subset of patients with NSCLC whose tumors express ROS1 fusion genes. Clin Cancer Res; 18(17); 4570-9. ©2012 AACR.

Identifying and targeting ROS1 gene fusions in non-small cell lung cancer

L. Terracciano;M. Roncalli;M. Alloisio;A. Santoro;
2012-01-01

Abstract

Purpose: Oncogenic gene fusions involving the 3′ region of ROS1 kinase have been identified in various human cancers. In this study, we sought to characterize ROS1 fusion genes in non-small cell lung cancer (NSCLC) and establish the fusion proteins as drug targets. Experimental Design: An NSCLC tissue microarray (TMA) panel containing 447 samples was screened for ROS1 rearrangement by FISH. This assay was also used to screen patients with NSCLC. In positive samples, the identity of the fusion partner was determined through inverse PCR and reverse transcriptase PCR. In addition, the clinical efficacy of ROS1 inhibition was assessed by treating a ROS1-positive patient with crizotinib. The HCC78 cell line, which expresses the SLC34A2-ROS1 fusion, was treated with kinase inhibitors that have activity against ROS1. The effects of ROS1 inhibition on proliferation, cell-cycle progression, and cell signaling pathways were analyzed by MTS assay, flow cytometry, and Western blotting. Results: In the TMA panel, 5 of 428 (1.2%) evaluable samples were found to be positive for ROS1 rearrangement. In addition, 1 of 48 patients tested positive for rearrangement, and this patient showed tumor shrinkage upon treatment with crizotinib. The patient and one TMA sample displayed expression of the recently identified SDC4-ROS1fusion, whereas twoTMAsamples expressed theCD74-ROS1 fusion and two others expressed the SLC34A2-ROS1 fusion. In HCC78 cells, treatment with ROS1 inhibitors was antiproliferative and downregulated signaling pathways that are critical for growth and survival. Conclusions: ROS1 inhibition may be an effective treatment strategy for the subset of patients with NSCLC whose tumors express ROS1 fusion genes. Clin Cancer Res; 18(17); 4570-9. ©2012 AACR.
2012
adult; aged; antigens; differentiation; B-lymphocyte; cell cycle; cell proliferation; female; histocompatibility antigens class II; humans; male; middle aged; neoplasm staging; protein kinase inhibitors; pyrazoles; pyridines; syndecan-4; carcinoma; non-small-cell lung; oncogene proteins; fusion; protein-tyrosine kinases; proto-oncogene proteins; sodium-phosphate cotransporter proteins; type IIb; cancer research; oncology
File in questo prodotto:
File Dimensione Formato  
aa.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 969.43 kB
Formato Adobe PDF
969.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/13253
Citazioni
  • ???jsp.display-item.citation.pmc??? 154
  • Scopus 405
  • ???jsp.display-item.citation.isi??? 359
social impact