The transcription factor interferon regulatory factor 6 (IRF6) regulates craniofacial development and epidermal proliferation. We recently showed that IRF6 is a component of a regulatory feedback loop that controls the proliferative potential of epidermal cells. IRF6 is transcriptionally activated by p63 and induces its proteasome-mediated down-regulation, thereby limiting keratinocyte proliferative potential. We hypothesized that IRF6 may also be involved in skin carcinogenesis. Hence, we analyzed IRF6 expression in a large series of squamous cell carcinomas (SCCs) and found a strong down-regulation of IRF6 that correlated with tumor invasive and differentiation status. IRF6 down-regulation in SCC cell lines and primary tumors correlates with methylation on a CpG dinucleotide island located in its promoter region. To identify the molecular mechanisms regulating IRF6 potential tumor suppressive activity, we performed a genome-wide analysis by combining ChIP sequencing for IRF6 binding sites and gene expression profiling in primary human keratinocytes after siRNA-mediated IRF6 depletion. We observed dysregulation of cell cycle-related genes and genes involved in differentiation, cell adhesion, and cell-cell contact. Many of these genes were direct IRF6 targets. We also performed in vitro invasion assays showing that IRF6 down-regulation promotes invasive behavior and that reintroduction of IRF6 into SCC cells strongly inhibits cell growth. These results indicate a function for IRF6 in suppression of tumorigenesis in stratified epithelia.

Developmental factor IRF6 exhibits tumor suppressor activity in squamous cell carcinomas.

COSTANZO ANTONIO
2011-01-01

Abstract

The transcription factor interferon regulatory factor 6 (IRF6) regulates craniofacial development and epidermal proliferation. We recently showed that IRF6 is a component of a regulatory feedback loop that controls the proliferative potential of epidermal cells. IRF6 is transcriptionally activated by p63 and induces its proteasome-mediated down-regulation, thereby limiting keratinocyte proliferative potential. We hypothesized that IRF6 may also be involved in skin carcinogenesis. Hence, we analyzed IRF6 expression in a large series of squamous cell carcinomas (SCCs) and found a strong down-regulation of IRF6 that correlated with tumor invasive and differentiation status. IRF6 down-regulation in SCC cell lines and primary tumors correlates with methylation on a CpG dinucleotide island located in its promoter region. To identify the molecular mechanisms regulating IRF6 potential tumor suppressive activity, we performed a genome-wide analysis by combining ChIP sequencing for IRF6 binding sites and gene expression profiling in primary human keratinocytes after siRNA-mediated IRF6 depletion. We observed dysregulation of cell cycle-related genes and genes involved in differentiation, cell adhesion, and cell-cell contact. Many of these genes were direct IRF6 targets. We also performed in vitro invasion assays showing that IRF6 down-regulation promotes invasive behavior and that reintroduction of IRF6 into SCC cells strongly inhibits cell growth. These results indicate a function for IRF6 in suppression of tumorigenesis in stratified epithelia.
2011
Carcinoma; Squamous Cell; pathology; Cell Physiological Processes; genetics; Cell Proliferation; DNA Methylation; Gene Expression Regulation; Neoplastic; Humans; Interferon Regulatory Factors; genetics/physiology; Keratinocytes; Neoplasm Invasiveness; Skin Neoplasms; Tumor Cells; Cultured; Tumor Suppressor Proteins
File in questo prodotto:
File Dimensione Formato  
01-Proceedings of the National Academy of Sciences 2011 Botti.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: Non specificato
Dimensione 757.35 kB
Formato Adobe PDF
757.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/13279
Citazioni
  • ???jsp.display-item.citation.pmc??? 84
  • Scopus 130
  • ???jsp.display-item.citation.isi??? 123
social impact