Aberrant let-7c microRNA (miRNA) expression has been observed in Helicobacter pylori-related gastric cancer (GC) but fragmentary information is available on the let-7c dysregulation occurring with each phenotypic change involved in gastric carcinogenesis. Let-7c expression was assessed (qRT-PCR) in a series of 175 gastric biopsy samples representative of the whole spectrum of phenotypic changes involved in H. pylori-related gastric oncogenesis including: i) normal gastric mucosa, as obtained from dyspeptic controls (40 biopsy samples); ii) non-atrophic gastritis (40 samples); iii) atrophic-metaplastic gastritis (35 samples); iv) intra-epithelial neoplasia (30 samples); v) GC (30 samples). Let-7c expression was also tested in 20 biopsy samples obtained from 10 patients before and after H. pylori eradication therapy (median follow-up: 10 weeks; range: 7-14). The results obtained were further validated by in situ hybridization on multiple tissue specimens obtained from 5 surgically treated H. pylori-related GCs. The study also included 40 oxyntic biopsy samples obtained from serologically/histologically confirmed autoimmune gastritis (AIG: 20 corpus-restricted, non-atrophic; 20 corpus-restricted, atrophic-metaplastic). Let-7c expression dropped from non-atrophic gastritis to atrophic-metaplastic gastritis, intra-epithelial neoplasia, and invasive GC (p<0.001). It rose again significantly following H. pylori eradication (p=0.009). As in the H. pylori model, AIG also featured a significant let-7c down-regulation (p<0.001). The earliest phases of the two pathways to gastric oncogenesis (H. pylori-environmental and autoimmune host-related) are characterized by similar let-7c dysregulations. In H. pylori infection, let-7c down-regulation regresses after the bacterium's eradication, while it progresses significantly with the increasing severity of the histological lesions.
Let-7c down-regulation in Helicobacter pylori-related gastric carcinogenesis
CASTORO CARLO;
2015-01-01
Abstract
Aberrant let-7c microRNA (miRNA) expression has been observed in Helicobacter pylori-related gastric cancer (GC) but fragmentary information is available on the let-7c dysregulation occurring with each phenotypic change involved in gastric carcinogenesis. Let-7c expression was assessed (qRT-PCR) in a series of 175 gastric biopsy samples representative of the whole spectrum of phenotypic changes involved in H. pylori-related gastric oncogenesis including: i) normal gastric mucosa, as obtained from dyspeptic controls (40 biopsy samples); ii) non-atrophic gastritis (40 samples); iii) atrophic-metaplastic gastritis (35 samples); iv) intra-epithelial neoplasia (30 samples); v) GC (30 samples). Let-7c expression was also tested in 20 biopsy samples obtained from 10 patients before and after H. pylori eradication therapy (median follow-up: 10 weeks; range: 7-14). The results obtained were further validated by in situ hybridization on multiple tissue specimens obtained from 5 surgically treated H. pylori-related GCs. The study also included 40 oxyntic biopsy samples obtained from serologically/histologically confirmed autoimmune gastritis (AIG: 20 corpus-restricted, non-atrophic; 20 corpus-restricted, atrophic-metaplastic). Let-7c expression dropped from non-atrophic gastritis to atrophic-metaplastic gastritis, intra-epithelial neoplasia, and invasive GC (p<0.001). It rose again significantly following H. pylori eradication (p=0.009). As in the H. pylori model, AIG also featured a significant let-7c down-regulation (p<0.001). The earliest phases of the two pathways to gastric oncogenesis (H. pylori-environmental and autoimmune host-related) are characterized by similar let-7c dysregulations. In H. pylori infection, let-7c down-regulation regresses after the bacterium's eradication, while it progresses significantly with the increasing severity of the histological lesions.File | Dimensione | Formato | |
---|---|---|---|
6642-102363-3-PB.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
2.68 MB
Formato
Adobe PDF
|
2.68 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.