Rapid prototyping of titania substrates with micro and nanofeatures is obtained by combining nanosphere lithography with supersonic cluster beam deposition on protein-functionalized glass supports. The proliferation and differentiation of PC12 cells were studied on these substrates. The facile control and modification of the substrate structure at the micro- and nanoscale allowed us to characterize the role of functional and structural features on neuritogenesis and to control this phenomenon by identifying the optimal topography.

Rapid prototyping of nano- and micro-patterned substrates for the control of cell neuritogenesis by topographic and chemical cues

M. Matteoli;
2011-01-01

Abstract

Rapid prototyping of titania substrates with micro and nanofeatures is obtained by combining nanosphere lithography with supersonic cluster beam deposition on protein-functionalized glass supports. The proliferation and differentiation of PC12 cells were studied on these substrates. The facile control and modification of the substrate structure at the micro- and nanoscale allowed us to characterize the role of functional and structural features on neuritogenesis and to control this phenomenon by identifying the optimal topography.
2011
Micropatterning; Nanotopography; Cell culture; Neural network; Titanium oxide
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/14662
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact