Adult vascular smooth muscle cells (VSMCs) possess the peculiar ability to de-differentiate in response to extracellular cues, such as vascular damage and inflammation. De-differentiated VSMCs are proliferative, migratory, and have decreased contractile capacity. VSMC dedifferentiation contributes not only to vascular repair, but also to cardiovascular pathologies, such as intimal hyperplasia/restenosis in coronary artery or peripheral vascular diseases and arterial aneurysm. We here demonstrate the role of ubiquitin-like, containing PHD and RING finger domains, 1 (UHRF1) as an epigenetic master regulator of VSMC plasticity. The expression of UHRF1 correlates with the development of a wide array of vascular pathologies associated also with modulation of non-coding RNAs, such as microRNAs. Importantly, miR-145, a pivotal gene regulating VSMC plasticity, which is reduced in vascular diseases, was found to control Uhrf1 mRNA translation. In turn, UHRF1 triggers VSMC proliferation by directly repressing the promoters of cell cycle inhibitor genes, such as p21 and p27, and of key pro-differentiation genes via the methylation of DNA and histones. Local vascular viral delivery of Uhrf1 shRNAs or Uhrf1 VSMC-specific deletion prevented intimal hyperplasia in mouse carotid artery and decreased vessel damage in a mouse model of aortic aneurysm.Our study demonstrates the fundamental role of Uhrf1 in regulating VSMC phenotype by promoting proliferation and de-differentiation. UHRF1 targeting may hold therapeutic potential in vascular pathologies, modulating also the VSMC component.

UHRF1 epigenetically orchestrates smooth muscle cell plasticity in arterial disease

Panico C;Condorelli G;
2018-01-01

Abstract

Adult vascular smooth muscle cells (VSMCs) possess the peculiar ability to de-differentiate in response to extracellular cues, such as vascular damage and inflammation. De-differentiated VSMCs are proliferative, migratory, and have decreased contractile capacity. VSMC dedifferentiation contributes not only to vascular repair, but also to cardiovascular pathologies, such as intimal hyperplasia/restenosis in coronary artery or peripheral vascular diseases and arterial aneurysm. We here demonstrate the role of ubiquitin-like, containing PHD and RING finger domains, 1 (UHRF1) as an epigenetic master regulator of VSMC plasticity. The expression of UHRF1 correlates with the development of a wide array of vascular pathologies associated also with modulation of non-coding RNAs, such as microRNAs. Importantly, miR-145, a pivotal gene regulating VSMC plasticity, which is reduced in vascular diseases, was found to control Uhrf1 mRNA translation. In turn, UHRF1 triggers VSMC proliferation by directly repressing the promoters of cell cycle inhibitor genes, such as p21 and p27, and of key pro-differentiation genes via the methylation of DNA and histones. Local vascular viral delivery of Uhrf1 shRNAs or Uhrf1 VSMC-specific deletion prevented intimal hyperplasia in mouse carotid artery and decreased vessel damage in a mouse model of aortic aneurysm.Our study demonstrates the fundamental role of Uhrf1 in regulating VSMC phenotype by promoting proliferation and de-differentiation. UHRF1 targeting may hold therapeutic potential in vascular pathologies, modulating also the VSMC component.
2018
Epigenetics; atherosclerosis; smooth muscle cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/2869
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 65
social impact