OBJECTIVE: Synovial B cells play a critical role in rheumatoid arthritis (RA), being involved in autoantibody synthesis, T cell activation, and cytokine production. CXCL13 is a B cell chemoattractant that is instrumental in synovial B cell organization; the regulatory determinants of CXCL13 in inflammation are poorly characterized. This study was undertaken to investigate the functional involvement of synovial T cells in the ectopic expression of CXCL13 in RA. METHODS: CXCL13 production and regulation were addressed using immunohistochemistry, in situ hybridization, quantitative polymerase chain reaction, multicolor flow cytometry, and enzyme-linked immunosorbent assay, by in situ-ex vivo analysis and in vitro functional assays with rheumatoid synovial tissue and primary cells. RESULTS: CXCL13 messenger RNA and protein expression and spontaneous CXCL13 secretion were detected in RA synovial fluid T cells but were not detected (or were detected only occasionally) in peripheral blood T cells. Analysis of tissue expression confirmed cytoplasm localization of CXCL13 in T lymphocytes infiltrating B cell follicles and small perivascular aggregates. Multicolor characterizations in synovial fluid demonstrated CXCL13 expression in antigen-experienced T helper cells, frequently characterized by terminal differentiation and the lack of the follicular helper T cell markers CXCR5 and BCL6 protein. In vitro functional assays revealed the enhancing effect of T cell receptor-CD28 engagement on CXCL13 production and secretion in primary cells. CONCLUSION: Our findings define a new functional property of synovial T cells, demonstrating their active involvement in the local production of B cell chemoattractants, and support a direct contribution of the adaptive immune system and antigen-dependent signals in the mechanisms of B cell localization in RA.

Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint.

Uguccioni M;Pitzalis C
2008-01-01

Abstract

OBJECTIVE: Synovial B cells play a critical role in rheumatoid arthritis (RA), being involved in autoantibody synthesis, T cell activation, and cytokine production. CXCL13 is a B cell chemoattractant that is instrumental in synovial B cell organization; the regulatory determinants of CXCL13 in inflammation are poorly characterized. This study was undertaken to investigate the functional involvement of synovial T cells in the ectopic expression of CXCL13 in RA. METHODS: CXCL13 production and regulation were addressed using immunohistochemistry, in situ hybridization, quantitative polymerase chain reaction, multicolor flow cytometry, and enzyme-linked immunosorbent assay, by in situ-ex vivo analysis and in vitro functional assays with rheumatoid synovial tissue and primary cells. RESULTS: CXCL13 messenger RNA and protein expression and spontaneous CXCL13 secretion were detected in RA synovial fluid T cells but were not detected (or were detected only occasionally) in peripheral blood T cells. Analysis of tissue expression confirmed cytoplasm localization of CXCL13 in T lymphocytes infiltrating B cell follicles and small perivascular aggregates. Multicolor characterizations in synovial fluid demonstrated CXCL13 expression in antigen-experienced T helper cells, frequently characterized by terminal differentiation and the lack of the follicular helper T cell markers CXCR5 and BCL6 protein. In vitro functional assays revealed the enhancing effect of T cell receptor-CD28 engagement on CXCL13 production and secretion in primary cells. CONCLUSION: Our findings define a new functional property of synovial T cells, demonstrating their active involvement in the local production of B cell chemoattractants, and support a direct contribution of the adaptive immune system and antigen-dependent signals in the mechanisms of B cell localization in RA.
2008
Chemokines
Rheumatology
T cells
Tissue expression
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/30305
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact