A real improvement in anterior cruciate ligament (ACL) surgery would be achieved if a global kinematic evaluation of graft performance could be made during surgery. A quantitative evaluation of all residual instabilities would be helpful in the evaluation of graft performances. This paper describes a new protocol for an accurate and extensive computer-assisted in vivo evaluation of joint laxities during ACL reconstruction. Fifteen in vivo kinematic evaluations during ACL reconstruction were performed using an optical localizer and custom software. The capability of the protocol was studied by analyzing the accuracy and repeatability of the results, the ergonomics of the setup, time taken, interactions with the surgical steps, and efficacy of the acquisitions. Repeatability of the tests, at maximum force, remained under 1 mm/2 degrees . Repeatability in tibia position and orientation was lower than 1 mm/4 degrees . Secondary laxities during stress tests remained under 2 mm/3 degrees . Added time to surgery was about 11 min. ACL graft increased joint stability up to 52% with respect to the preoperative level. The simplicity and morbidity of the test procedure and system was minimally invasive and allowed a quantitative evaluation of knee laxities at time zero. The repeatability of the tests opens the way for future research on in vivo evaluation of different ACL reconstruction techniques, which may lead to a better understanding of associated lesions and their role to the global knee stability.

New intraoperative protocol for kinematic evaluation of ACL reconstruction: preliminary results

Marcacci M
2006-01-01

Abstract

A real improvement in anterior cruciate ligament (ACL) surgery would be achieved if a global kinematic evaluation of graft performance could be made during surgery. A quantitative evaluation of all residual instabilities would be helpful in the evaluation of graft performances. This paper describes a new protocol for an accurate and extensive computer-assisted in vivo evaluation of joint laxities during ACL reconstruction. Fifteen in vivo kinematic evaluations during ACL reconstruction were performed using an optical localizer and custom software. The capability of the protocol was studied by analyzing the accuracy and repeatability of the results, the ergonomics of the setup, time taken, interactions with the surgical steps, and efficacy of the acquisitions. Repeatability of the tests, at maximum force, remained under 1 mm/2 degrees . Repeatability in tibia position and orientation was lower than 1 mm/4 degrees . Secondary laxities during stress tests remained under 2 mm/3 degrees . Added time to surgery was about 11 min. ACL graft increased joint stability up to 52% with respect to the preoperative level. The simplicity and morbidity of the test procedure and system was minimally invasive and allowed a quantitative evaluation of knee laxities at time zero. The repeatability of the tests opens the way for future research on in vivo evaluation of different ACL reconstruction techniques, which may lead to a better understanding of associated lesions and their role to the global knee stability.
2006
anterior cruciate ligament
kinematic evaluation
navigation system
knee
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/32189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 71
  • ???jsp.display-item.citation.isi??? 55
social impact