The intestine is populated by a large variety of microorganisms that colonize the host soon after birth. The gut microflora contributes to several intestinal functions, including the development of the mucosal immune system, the absorption of complex macromolecules, the synthesis of amino acids and vitamins and the protection against pathogenic microorganisms. Its composition varies along the different segments of the gut, with a gradient from the stomach to the colon where it is more abundant. Given the vital relationship between the microflora and the intestinal function, it is important that the microflora is kept continuously under control so to preserve gut homeostasis. When this is not achieved or perturbed, several immune disorders can arise, like allergies or inflammation. Protracted immune deregulations can also lead to severe disorders including diabetes, cancer and inflammatory bowel disease (IBD). It is therefore crucial that the immune system learns both to tolerate and to control the growth of beneficial microorganisms so to preserve the intestinal homeostasis. The mechanisms that are in place to achieve this control are not yet understood but recent work has started to unravel the complex relationship between several players including the microflora, intestinal barriers and immune cells. In this review we will analyze how the microflora interacts with the host and how deregulation of this interaction can lead to inflammatory disorders and eventually also to cancer.

The pathogenic role of intestinal flora in IBD and colon cancer

Rescigno M
2008-01-01

Abstract

The intestine is populated by a large variety of microorganisms that colonize the host soon after birth. The gut microflora contributes to several intestinal functions, including the development of the mucosal immune system, the absorption of complex macromolecules, the synthesis of amino acids and vitamins and the protection against pathogenic microorganisms. Its composition varies along the different segments of the gut, with a gradient from the stomach to the colon where it is more abundant. Given the vital relationship between the microflora and the intestinal function, it is important that the microflora is kept continuously under control so to preserve gut homeostasis. When this is not achieved or perturbed, several immune disorders can arise, like allergies or inflammation. Protracted immune deregulations can also lead to severe disorders including diabetes, cancer and inflammatory bowel disease (IBD). It is therefore crucial that the immune system learns both to tolerate and to control the growth of beneficial microorganisms so to preserve the intestinal homeostasis. The mechanisms that are in place to achieve this control are not yet understood but recent work has started to unravel the complex relationship between several players including the microflora, intestinal barriers and immune cells. In this review we will analyze how the microflora interacts with the host and how deregulation of this interaction can lead to inflammatory disorders and eventually also to cancer.
2008
animals; bacteria; colonic neoplasms; homeostasis; humans; immune tolerance; immunity; mucosal; inflammatory bowel diseases; intestinal mucosa; intestines; probiotics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/3305
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 44
social impact