Gastrointestinal tumors with DNA mismatch repair (MMR) defects show microsatellite instability (MSI) and harbor frameshift mutations in coding mononucleotide repeats of cancer-related genes (targets). We assessed MSI status in 233 sporadic gastrointestinal tumors. We classified as MSI-H (high-frequency microsatellite instability) 15 (10%) of 150 colorectal cancers and 13 (16%) of 83 gastric cancers. We searched for frameshift mutations in a coding poly(T)(8) tract within the gastrin receptor gene (hGARE), which has a potential role in gastrointestinal carcinogenesis. To this purpose, we screened 43 unstable tumors (including 15 hereditary nonpolyposis colorectal cancer cases previously classified as MSI-H), 98 stable tumors, as well as 3 MMR-deficient and 4 MMR-proficient gastrointestinal cancer cell lines. We found mutations in 8 (19%) of the 43 MSI-H tumors but in none of the 98 stable cancers. hGARE mutation frequency was similar in gastric (23%) and colorectal cancers, including sporadic (13%) and hereditary (20%) cases. All mutated tumors proved to harbor frameshift mutations in other cancer-related genes that are considered as targets in MSI tumorigenesis. The MMR-deficient and gastrin-sensitive LoVo colorectal cancer cells also showed a hGARE heterozygous frameshift mutation, but expressed only the mutated allele. All detected mutations can be predicted to generate a truncated protein carrying amino acid changes. On the basis of genetic findings, we propose hGARE as a new candidate target gene in MSI tumorigenesis. Functional studies are warranted to elucidate the mechanism by which the hGARE mutation might contribute to gastrointestinal carcinogenesis.

Frameshift mutations of human gastrin receptor gene (hGARE) in gastrointestinal cancers with microsatellite instability

M. Roncalli;A. Malesci
2002-01-01

Abstract

Gastrointestinal tumors with DNA mismatch repair (MMR) defects show microsatellite instability (MSI) and harbor frameshift mutations in coding mononucleotide repeats of cancer-related genes (targets). We assessed MSI status in 233 sporadic gastrointestinal tumors. We classified as MSI-H (high-frequency microsatellite instability) 15 (10%) of 150 colorectal cancers and 13 (16%) of 83 gastric cancers. We searched for frameshift mutations in a coding poly(T)(8) tract within the gastrin receptor gene (hGARE), which has a potential role in gastrointestinal carcinogenesis. To this purpose, we screened 43 unstable tumors (including 15 hereditary nonpolyposis colorectal cancer cases previously classified as MSI-H), 98 stable tumors, as well as 3 MMR-deficient and 4 MMR-proficient gastrointestinal cancer cell lines. We found mutations in 8 (19%) of the 43 MSI-H tumors but in none of the 98 stable cancers. hGARE mutation frequency was similar in gastric (23%) and colorectal cancers, including sporadic (13%) and hereditary (20%) cases. All mutated tumors proved to harbor frameshift mutations in other cancer-related genes that are considered as targets in MSI tumorigenesis. The MMR-deficient and gastrin-sensitive LoVo colorectal cancer cells also showed a hGARE heterozygous frameshift mutation, but expressed only the mutated allele. All detected mutations can be predicted to generate a truncated protein carrying amino acid changes. On the basis of genetic findings, we propose hGARE as a new candidate target gene in MSI tumorigenesis. Functional studies are warranted to elucidate the mechanism by which the hGARE mutation might contribute to gastrointestinal carcinogenesis.
2002
nonpolyposis colorectal-cancer; polymerase-chain-reaction; tumor-cell lines; mutator phenotype; induced internalization; somatic mutations; colon cancers; target genes; B receptor; expression
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/4002
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact