Preclinical evaluation of spinal implants is a necessary step to ensure their reliability and safety before implantation. The American Society for Testing and Materials reapproved F1717 standard for the assessment of mechanical properties of posterior spinal fixators, which simulates a vertebrectomy model and recommends mimicking vertebral bodies using polyethylene blocks. This set-up should represent the clinical use, but available data in the literature are few. Anatomical parameters depending on the spinal level were compared to published data or measurements on biplanar stereoradiography on 13 patients. Other mechanical variables, describing implant design were considered, and all parameters were investigated using a numerical parametric finite element model. Stress values were calculated by considering either the combination of the average values for each parameter or their worst-case combination depending on the spinal level. The standard set-up represents quite well the anatomy of an instrumented average thoracolumbar segment. The stress on the pedicular screw is significantly influenced by the lever arm of the applied load, the unsupported screw length, the position of the centre of rotation of the functional spine unit and the pedicular inclination with respect to the sagittal plane. The worst-case combination of parameters demonstrates that devices implanted below T5 could potentially undergo higher stresses than those described in the standard suggestions (maximum increase of 22.2% at L1). We propose to revise F1717 in order to describe the anatomical worst case condition we found at L1 level: this will guarantee higher safety of the implant for a wider population of patients.

ASTM F1717 standard for the preclinical evaluation of posterior spinal fixators: can we improve it?

Costa, Francesco
Writing – Review & Editing
;
2014-01-01

Abstract

Preclinical evaluation of spinal implants is a necessary step to ensure their reliability and safety before implantation. The American Society for Testing and Materials reapproved F1717 standard for the assessment of mechanical properties of posterior spinal fixators, which simulates a vertebrectomy model and recommends mimicking vertebral bodies using polyethylene blocks. This set-up should represent the clinical use, but available data in the literature are few. Anatomical parameters depending on the spinal level were compared to published data or measurements on biplanar stereoradiography on 13 patients. Other mechanical variables, describing implant design were considered, and all parameters were investigated using a numerical parametric finite element model. Stress values were calculated by considering either the combination of the average values for each parameter or their worst-case combination depending on the spinal level. The standard set-up represents quite well the anatomy of an instrumented average thoracolumbar segment. The stress on the pedicular screw is significantly influenced by the lever arm of the applied load, the unsupported screw length, the position of the centre of rotation of the functional spine unit and the pedicular inclination with respect to the sagittal plane. The worst-case combination of parameters demonstrates that devices implanted below T5 could potentially undergo higher stresses than those described in the standard suggestions (maximum increase of 22.2% at L1). We propose to revise F1717 in order to describe the anatomical worst case condition we found at L1 level: this will guarantee higher safety of the implant for a wider population of patients.
2014
ASTM F1717
ISO 12189
fatigue testing
finite element model
parametric study
pedicle anatomy
pedicle screw
pedicular inclination
standard
Bone Nails
Bone Screws
Computer Simulation
Equipment Failure Analysis
Fracture Fixation, Internal
Humans
Models, Biological
Reference Standards
Spinal Fractures
Spine
United States
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/61580
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 24
social impact