The International Standardization Organization (ISO) 12189 standard was recently introduced to preclinically evaluate and compare the mechanical properties of posterior stabilization devices. This scenario presents some new significant steps ahead over the vertebrectomy model recommended by American Society for Testing and Materials (ASTM) F1717 standard: the modular anterior support allows for describing a closer scenario to the effective clinical use as well as to test very flexible and dynamic posterior stabilization devices. Despite these significant advantages, ISO 12189 received little attention in the literature. Anatomical parameters depending on the spinal level were compared to the published data or original measurements on biplanar stereoradiography on 13 patients. Other mechanical variables, describing the test set-up design, were considered and all parameters were investigated using a numerical parametric finite element model. Stress values were calculated by also considering their worst-case combination. The standard set-up represents quite well the anatomy of an instrumented average thoracolumbar segment. The parametric comparative analysis demonstrates a significant (even beyond +350%) maximum increase in the stress on the device, compared to the standard currently in use. The anterior support stiffness plays the most detrimental effect (maximum stress increases up to 396%). The initial precompression step has an important role in determining the final stress values achieved at peak load (up to +76%). Moreover, when combining these two contributions, an even higher stress increase may be achieved (up to 473%). Despite the other anatomical parameters playing a secondary role, their worst-case combination demonstrates that a device could potentially undergo higher stresses than those reached according to standard suggestions (maximum increase of 22.4% at L1). Any user/designer should be aware of these effects when using ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices.

ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices - II: A parametric comparative study

Costa, F
Writing – Review & Editing
;
2016-01-01

Abstract

The International Standardization Organization (ISO) 12189 standard was recently introduced to preclinically evaluate and compare the mechanical properties of posterior stabilization devices. This scenario presents some new significant steps ahead over the vertebrectomy model recommended by American Society for Testing and Materials (ASTM) F1717 standard: the modular anterior support allows for describing a closer scenario to the effective clinical use as well as to test very flexible and dynamic posterior stabilization devices. Despite these significant advantages, ISO 12189 received little attention in the literature. Anatomical parameters depending on the spinal level were compared to the published data or original measurements on biplanar stereoradiography on 13 patients. Other mechanical variables, describing the test set-up design, were considered and all parameters were investigated using a numerical parametric finite element model. Stress values were calculated by also considering their worst-case combination. The standard set-up represents quite well the anatomy of an instrumented average thoracolumbar segment. The parametric comparative analysis demonstrates a significant (even beyond +350%) maximum increase in the stress on the device, compared to the standard currently in use. The anterior support stiffness plays the most detrimental effect (maximum stress increases up to 396%). The initial precompression step has an important role in determining the final stress values achieved at peak load (up to +76%). Moreover, when combining these two contributions, an even higher stress increase may be achieved (up to 473%). Despite the other anatomical parameters playing a secondary role, their worst-case combination demonstrates that a device could potentially undergo higher stresses than those reached according to standard suggestions (maximum increase of 22.4% at L1). Any user/designer should be aware of these effects when using ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices.
2016
ISO 12189
ASTM F1717
ISO 10243
standard
fatigue
preclinical evaluation
pedicle screw
spine stabilization
finite element
parametric study
finite element model
Aged
Aged, 80 and over
Female
Finite Element Analysis
Humans
Internal Fixators
Male
Materials Testing
Middle Aged
Spinal Fusion
Spine
Models, Biological
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/61584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact