Acute or degenerative meniscus tears are the most common knee lesions. Meniscectomy provides symptomatic relief and functional recovery only in the short- to mid-term follow-up but significantly increases the risk of osteoarthritis. For this reason, preserving the meniscus is key, although it remains a challenge. Allograft transplants present many disadvantages, so during the last 20 years preclinical and clinical research focused on developing and investigating meniscal scaffolds. The aim of this systematic review was to collect and evaluate all the available evidence on biosynthetic scaffolds for meniscus regeneration both in vivo and in clinical studies. Three databases were searched: 46 in vivo preclinical studies and 30 clinical ones were found. Sixteen natural, 15 synthetic, and 15 hybrid scaffolds were studied in vivo. Among them, only 2 were translated into clinic: the Collagen Meniscus Implant, used in 11 studies, and the polyurethane-based scaffold Actifit (R), applied in 19 studies. Although positive outcomes were described in the short- to mid-term, the number of concurrent procedures and the lack of randomized trials are the major limitations of the available clinical literature. Few in vivo studies also combined the use of cells or growth factors, but these augmentation strategies have not been applied in the clinical practice yet. Current solutions offer a significant but incomplete clinical improvement, and the regeneration potential is still unsatisfactory. Building upon the overall positive results of these "old" technologies to address partial meniscal loss, further innovation is urgently needed in this field to provide patients better joint sparing treatment options.

Biosynthetic scaffolds for partial meniscal loss: A systematic review from animal models to clinical practice

Di Matteo, B;Kon, E;
2021-01-01

Abstract

Acute or degenerative meniscus tears are the most common knee lesions. Meniscectomy provides symptomatic relief and functional recovery only in the short- to mid-term follow-up but significantly increases the risk of osteoarthritis. For this reason, preserving the meniscus is key, although it remains a challenge. Allograft transplants present many disadvantages, so during the last 20 years preclinical and clinical research focused on developing and investigating meniscal scaffolds. The aim of this systematic review was to collect and evaluate all the available evidence on biosynthetic scaffolds for meniscus regeneration both in vivo and in clinical studies. Three databases were searched: 46 in vivo preclinical studies and 30 clinical ones were found. Sixteen natural, 15 synthetic, and 15 hybrid scaffolds were studied in vivo. Among them, only 2 were translated into clinic: the Collagen Meniscus Implant, used in 11 studies, and the polyurethane-based scaffold Actifit (R), applied in 19 studies. Although positive outcomes were described in the short- to mid-term, the number of concurrent procedures and the lack of randomized trials are the major limitations of the available clinical literature. Few in vivo studies also combined the use of cells or growth factors, but these augmentation strategies have not been applied in the clinical practice yet. Current solutions offer a significant but incomplete clinical improvement, and the regeneration potential is still unsatisfactory. Building upon the overall positive results of these "old" technologies to address partial meniscal loss, further innovation is urgently needed in this field to provide patients better joint sparing treatment options.
2021
Collagen
Meniscal scaffold
Meniscectomy
Osteoarthritis
Polyurethane
Regenerative medicine
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/65232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 14
social impact