The 5' untranslated region (UTR) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome is a conserved, functional and structured genomic region consisting of several RNA stem-loop elements. While the secondary structure of such elements has been determined experimentally, their threedimensional structures are not known yet. Here, we predict structure and dynamics of five RNA stem loops in the 5'-UTR of SARS-CoV-2 by extensive atomistic molecular dynamics simulations, more than 0.5 ms of aggregate simulation time, in combination with enhanced sampling techniques. We compare simulations with available experimental data, describe the resulting conformational ensembles, and identify the presence of specific structural rearrangements in apical and internal loops that may be functionally relevant. Our atomic-detailed structural predictions reveal a rich dynamics in these RNA molecules, could help the experimental characterization of these systems, and provide putative three-dimensional models for structure-based drug design studies.

Conformational Ensembles of Noncoding Elements in the SARS-CoV-2 Genome from Molecular Dynamics Simulations

Bottaro, Sandro
;
2021-01-01

Abstract

The 5' untranslated region (UTR) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome is a conserved, functional and structured genomic region consisting of several RNA stem-loop elements. While the secondary structure of such elements has been determined experimentally, their threedimensional structures are not known yet. Here, we predict structure and dynamics of five RNA stem loops in the 5'-UTR of SARS-CoV-2 by extensive atomistic molecular dynamics simulations, more than 0.5 ms of aggregate simulation time, in combination with enhanced sampling techniques. We compare simulations with available experimental data, describe the resulting conformational ensembles, and identify the presence of specific structural rearrangements in apical and internal loops that may be functionally relevant. Our atomic-detailed structural predictions reveal a rich dynamics in these RNA molecules, could help the experimental characterization of these systems, and provide putative three-dimensional models for structure-based drug design studies.
2021
5' Untranslated Regions
Base Sequence
COVID-19
Genome, Viral
Humans
Molecular Dynamics Simulation
Molecular Structure
Nucleic Acid Conformation
RNA, Viral
SARS-CoV-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/65261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 13
social impact