The introduction of new multi-genotypic direct acting antivirals (DAA) in clinical practice has revolutionized HCV treatment, permitting the achievement of >95% rates of sustained virological response in many patients. However, virological failures can occur particularly if the treatments are sub optimal and/or with too short duration. Failure is often associated with development of resistance. The wide genetic variability in terms of different genotypes and subtypes, together with the natural presence and/or easy development of resistance during treatment, are intrinsic characteristics of HCV that may affect the treatment outcome and the chances of achieving a virological cure. This review explores in detail the aspects of HCV innate and treatment-induced resistance to new interferon-free DAA regimens.
Viral resistance in HCV infection
Cento, Valeria;
2018-01-01
Abstract
The introduction of new multi-genotypic direct acting antivirals (DAA) in clinical practice has revolutionized HCV treatment, permitting the achievement of >95% rates of sustained virological response in many patients. However, virological failures can occur particularly if the treatments are sub optimal and/or with too short duration. Failure is often associated with development of resistance. The wide genetic variability in terms of different genotypes and subtypes, together with the natural presence and/or easy development of resistance during treatment, are intrinsic characteristics of HCV that may affect the treatment outcome and the chances of achieving a virological cure. This review explores in detail the aspects of HCV innate and treatment-induced resistance to new interferon-free DAA regimens.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.