BACKGROUND: Colorectal cancer (CRC) is a life-threatening complication of ulcerative colitis (UC), and patients are routinely screened for the development of precancerous lesions (dysplasia). However, rates of CRC development in patients with confirmed low-grade dysplasia vary widely between studies, suggesting a large degree of heterogeneity between these lesions that is not detectable macroscopically. A better understanding of the underlying molecular changes that occur in dysplasia will help to identify lesions at higher risk of malignancy. MicroRNAs (miRNAs) post-transcriptionally regulate protein expression and cell-signalling networks. Aberrant miRNA expression is a feature of sporadic CRC but much less is known about the changes that occur in dysplasia and in UC. METHODS: Comprehensive microRNA profiling was performed on RNA extracted from UC dysplastic lesions (n = 7) and UC controls (n = 10). The expression of miRNAs in UC post inflammatory polyps (n = 7) was also assessed. Candidate miRNAs were further validated by qPCR, and miRNA in situ hybridization. Serum levels of miRNAs were also assessed with a view to identification of non-invasive biomarkers of dysplasia. RESULTS: UC dysplasia was associated with a shift in miRNA expression profiles that was not seen in inflammatory polyps. In particular, levels of miR-200b-3p were increased in dysplasia, and this miRNA was localised to epithelial cells in dysplastic lesions and in UC cancers. No changes in miRNA levels were detected in the serum. CONCLUSION: UC-Dysplasia is linked to altered miRNA expression in the mucosa and elevated miR-200b-3p levels.
The miR-200 family is increased in dysplastic lesions in ulcerative colitis patients
Armuzzi A;
2017-01-01
Abstract
BACKGROUND: Colorectal cancer (CRC) is a life-threatening complication of ulcerative colitis (UC), and patients are routinely screened for the development of precancerous lesions (dysplasia). However, rates of CRC development in patients with confirmed low-grade dysplasia vary widely between studies, suggesting a large degree of heterogeneity between these lesions that is not detectable macroscopically. A better understanding of the underlying molecular changes that occur in dysplasia will help to identify lesions at higher risk of malignancy. MicroRNAs (miRNAs) post-transcriptionally regulate protein expression and cell-signalling networks. Aberrant miRNA expression is a feature of sporadic CRC but much less is known about the changes that occur in dysplasia and in UC. METHODS: Comprehensive microRNA profiling was performed on RNA extracted from UC dysplastic lesions (n = 7) and UC controls (n = 10). The expression of miRNAs in UC post inflammatory polyps (n = 7) was also assessed. Candidate miRNAs were further validated by qPCR, and miRNA in situ hybridization. Serum levels of miRNAs were also assessed with a view to identification of non-invasive biomarkers of dysplasia. RESULTS: UC dysplasia was associated with a shift in miRNA expression profiles that was not seen in inflammatory polyps. In particular, levels of miR-200b-3p were increased in dysplasia, and this miRNA was localised to epithelial cells in dysplastic lesions and in UC cancers. No changes in miRNA levels were detected in the serum. CONCLUSION: UC-Dysplasia is linked to altered miRNA expression in the mucosa and elevated miR-200b-3p levels.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.