Purpose: The goal of hi is study is to optimize the activity of trabectedin for Ewing sarcoma by developing a molecularly targeted combination therapy. Experimental Design: We have recently shown that trabectedin interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. In this report, we build on this work to develop a trabectedin-based combination therapy with improved EWS-FLI1 suppression that also targets the drug-associated DNA damage to Ewing sarcoma cells. Results: We demonstrate by siRNA experiments that EWS-FLI1 drives the expression of the Werner syndrome protein (WRN) in Ewing sarcoma cells. Because WRN-deficient cells are known to be hypersensitive to camptothecins, we utilize trabectedin to block EWS-FLI1 activity, suppress WRN expression, and selectively sensitize Ewing sarcoma cells to the DNA-damaging effects of SN38. We show that trabectedin and SN38 are synergistic, demonstrate an increase in DNA double-strand breaks, an accumulation of cells in S-phase and a low picomolar IC50, In addition, SN38 cooperates with trabectedin to augment the suppression of EWS-FLI1. downstream targets, leading to an improved therapeutic index in vivo. These effects translate into the marked regression of two Ewing sarcoma xenografts at a fraction of the dose of camptothecin used in other xenograft studies. Conclusions: These results provide the basis and rationale for translating this drug combination to the clinic. In addition, the study highlights an approach that utilizes a targeted agent to interfere with an oncogenic transcription factor and then exploits the resulting changes in gene expression to develop a molecularly targeted combination therapy. (C) 2013 AACR.

Dual Targeting of EWS-FLI1 Activity and the Associated DNA Damage Response with Trabectedin and SN38 Synergistically Inhibits Ewing Sarcoma Cell Growth

D'Incalci M;
2014-01-01

Abstract

Purpose: The goal of hi is study is to optimize the activity of trabectedin for Ewing sarcoma by developing a molecularly targeted combination therapy. Experimental Design: We have recently shown that trabectedin interferes with the activity of EWS-FLI1 in Ewing sarcoma cells. In this report, we build on this work to develop a trabectedin-based combination therapy with improved EWS-FLI1 suppression that also targets the drug-associated DNA damage to Ewing sarcoma cells. Results: We demonstrate by siRNA experiments that EWS-FLI1 drives the expression of the Werner syndrome protein (WRN) in Ewing sarcoma cells. Because WRN-deficient cells are known to be hypersensitive to camptothecins, we utilize trabectedin to block EWS-FLI1 activity, suppress WRN expression, and selectively sensitize Ewing sarcoma cells to the DNA-damaging effects of SN38. We show that trabectedin and SN38 are synergistic, demonstrate an increase in DNA double-strand breaks, an accumulation of cells in S-phase and a low picomolar IC50, In addition, SN38 cooperates with trabectedin to augment the suppression of EWS-FLI1. downstream targets, leading to an improved therapeutic index in vivo. These effects translate into the marked regression of two Ewing sarcoma xenografts at a fraction of the dose of camptothecin used in other xenograft studies. Conclusions: These results provide the basis and rationale for translating this drug combination to the clinic. In addition, the study highlights an approach that utilizes a targeted agent to interfere with an oncogenic transcription factor and then exploits the resulting changes in gene expression to develop a molecularly targeted combination therapy. (C) 2013 AACR.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/67475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 58
social impact