Purpose: MMDX {3'-deamino-3'-[2(S)-methoxy- 4-morpholinyl] doxorubicin}, an anthracycline derivative active in vitro and in vivo against multidrug-resistant tumors, is currently under investigation in phase I clinical trials. In vivo it is metabolically activated, resulting in more cytotoxic compounds. We determined in vitro the toxic concentration of a 1-h period of exposure to doxorubicin (DX), MMDX, and bioactivated MMDX on hematopoietic progenitors and tumor cell lines. Methods: DX and MMDX were tested on both bone marrow- (BM) and cord blood (hCB)-derived clonogenic cells, whereas the metabolites were tested on hCB only. All substances were tested on seven tumor cell lines. Results: BM cells proved to be twice as sensitive as hCB cells to cytotoxics, and MMDX was twice as toxic as DX against hCB cells, MMDX activated with normal rat-liver microsomes and with dexamethasone-induced rat microsomes were, respectively, 70 and 230 times more toxic than MMDX. A comparison of the cytotoxic concentrations on hematopoietic progenitors and tumor cells, revealed that DX and MMDX had 5-fold stronger activity on tumor cell lines than on granulocyte/macrophage colony-forming cells (GM-CFCs), whereas bioactivated MMDX showed comparable cytotoxicity against tumor cells and hematopoietic progenitors. Conclusions: MMDX metabolites are very potent but display a lower degree of tumor selectivity than MMDX. Strategies to reduce MMDX metabolization should be developed to optimize the therapeutic index of this new anthracycline.

Hematotoxicity on human bone marrow- and umbilical cord blood-derived progenitor cells and in vitro therapeutic index of methoxymorpholinyldoxorubicin and its metabolites

D'Incalci M;
1998-01-01

Abstract

Purpose: MMDX {3'-deamino-3'-[2(S)-methoxy- 4-morpholinyl] doxorubicin}, an anthracycline derivative active in vitro and in vivo against multidrug-resistant tumors, is currently under investigation in phase I clinical trials. In vivo it is metabolically activated, resulting in more cytotoxic compounds. We determined in vitro the toxic concentration of a 1-h period of exposure to doxorubicin (DX), MMDX, and bioactivated MMDX on hematopoietic progenitors and tumor cell lines. Methods: DX and MMDX were tested on both bone marrow- (BM) and cord blood (hCB)-derived clonogenic cells, whereas the metabolites were tested on hCB only. All substances were tested on seven tumor cell lines. Results: BM cells proved to be twice as sensitive as hCB cells to cytotoxics, and MMDX was twice as toxic as DX against hCB cells, MMDX activated with normal rat-liver microsomes and with dexamethasone-induced rat microsomes were, respectively, 70 and 230 times more toxic than MMDX. A comparison of the cytotoxic concentrations on hematopoietic progenitors and tumor cells, revealed that DX and MMDX had 5-fold stronger activity on tumor cell lines than on granulocyte/macrophage colony-forming cells (GM-CFCs), whereas bioactivated MMDX showed comparable cytotoxicity against tumor cells and hematopoietic progenitors. Conclusions: MMDX metabolites are very potent but display a lower degree of tumor selectivity than MMDX. Strategies to reduce MMDX metabolization should be developed to optimize the therapeutic index of this new anthracycline.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/67603
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 20
social impact