Ribonuclease T2 (RNASET2) is a pleiotropic and polyfunctional protein, which exerts several different activities in neoplastic cells since the early steps of tumor development. Besides having an antitumorigenic activity, RNASET2 inhibits both bFGF-induced and VEGF-induced angiogenesis and has a role as a stress-response, alarmin-like, protein. In this study, we investigated RNASET2 expression in well-differentiated and poorly differentiated neuroendocrine neoplasms of the lung (Lu-NENs), which are known to show clear-cut differences in morphology, biology and clinical behavior. In addition, we explored possible relationships between RNASET2 expression and a series of immunohistochemical markers related to hypoxic stress, apoptosis, proliferation and angiogenesis. Our results showed a significantly higher expression of RNASET2, HIF-1 α and its target CA IX in poorly differentiated than in well-differentiated Lu-NENs, the former also showing higher proliferation and apoptotic rates, as well as a lower microvessel density (MVD) than the latter. Moreover, we were able to demonstrate in vitro an overexpression of RNASET2 in consequence of the activation of HIF-1 α. In conclusion, we suggest that in poorly differentiated Lu-NENs, RNASET2 expression may be induced by HIF-1 α behaving as an alarmin-like molecule. In this aggressive group of cancers, which have highly deregulated proliferation pathways, RNASET2 fails to exert the growth-inhibiting effects described in other types of neoplasms. Its increased expression, however, may contribute to the typical phenotypic alterations seen in poorly differentiated Lu-NENs, such as the high apoptotic rate and the extensive necrosis, and may also enhance the low MVD observed in these neoplasms.
New insights into hypoxia-related mechanisms involved in different microvascular patterns of bronchopulmonary carcinoids and poorly differentiated neuroendocrine carcinomas. Role of ribonuclease T2 (RNASET2) and HIF-1 α
Uccella, Silvia;
2018-01-01
Abstract
Ribonuclease T2 (RNASET2) is a pleiotropic and polyfunctional protein, which exerts several different activities in neoplastic cells since the early steps of tumor development. Besides having an antitumorigenic activity, RNASET2 inhibits both bFGF-induced and VEGF-induced angiogenesis and has a role as a stress-response, alarmin-like, protein. In this study, we investigated RNASET2 expression in well-differentiated and poorly differentiated neuroendocrine neoplasms of the lung (Lu-NENs), which are known to show clear-cut differences in morphology, biology and clinical behavior. In addition, we explored possible relationships between RNASET2 expression and a series of immunohistochemical markers related to hypoxic stress, apoptosis, proliferation and angiogenesis. Our results showed a significantly higher expression of RNASET2, HIF-1 α and its target CA IX in poorly differentiated than in well-differentiated Lu-NENs, the former also showing higher proliferation and apoptotic rates, as well as a lower microvessel density (MVD) than the latter. Moreover, we were able to demonstrate in vitro an overexpression of RNASET2 in consequence of the activation of HIF-1 α. In conclusion, we suggest that in poorly differentiated Lu-NENs, RNASET2 expression may be induced by HIF-1 α behaving as an alarmin-like molecule. In this aggressive group of cancers, which have highly deregulated proliferation pathways, RNASET2 fails to exert the growth-inhibiting effects described in other types of neoplasms. Its increased expression, however, may contribute to the typical phenotypic alterations seen in poorly differentiated Lu-NENs, such as the high apoptotic rate and the extensive necrosis, and may also enhance the low MVD observed in these neoplasms.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.