Glucose transport and GLUT1 expression were studied in fibroblasts from 7 lean and 5 obese non-insulin-dependent diabetic (NIDDM) subjects with at least 2 NIDDM first-degree relatives and from 12 lean and 5 obese non-diabetic subjects with no family history of diabetes. The obese individuals also had a strong family history of obesity. Fibroblasts from all of the subjects exhibited no difference in insulin receptor binding, autophosphorylation, and kinase and hexokinase activity. At variance, basal 2-deoxyglucose (2-DG) uptake and 3H-cytochalasin B binding were 50% increased in cells from individuals with NIDDM (p < 0.001) and/or obesity (p < 0.01) as compared to the lean non-diabetic subjects. Insulin-dependent (maximally stimulated-basal) 2-DG uptake and cytochalasin B binding were decreased three-fold in cells from the diabetic and/or obese subjects (p < 0.01). GLUT1 mRNA and total protein levels were comparable in fibroblasts from all the groups. However, basal GLUT1 cell-surface content was 50% greater in fibroblasts from the NIDDM and/or obese subjects as compared to the lean non-diabetic individuals while insulin-dependent GLUT1 recruitment at the cell surface was diminished three-fold. Increased basal GLUT1 content in the plasma membrane was also observed in skeletal muscle of 4 NIDDM and 3 non-diabetic obese individuals (p < 0.05 vs the lean non diabetic subjects). Basal 2-DG uptake in fibroblasts from diabetic/obese individuals and lean control subjects strongly correlated with the in vivo fasting plasma insulin concentration of the donor. A negative correlation was demonstrated between the magnitude of insulin-dependent glucose uptake by the fibroblasts and plasma insulin levels in vivo. We conclude that a primary abnormality in glucose transport and GLUT1 cell-surface content is present in fibroblasts from NIDDM and obese individuals. The abnormal GLUT1 content is also present in skeletal muscle plasma membranes from NIDDM and obese individuals.

Abnormal glucose transport and GLUT1 cell-surface content in fibroblasts and skeletal muscle from NIDDM and obese subjects

Condorelli, G;
1997-01-01

Abstract

Glucose transport and GLUT1 expression were studied in fibroblasts from 7 lean and 5 obese non-insulin-dependent diabetic (NIDDM) subjects with at least 2 NIDDM first-degree relatives and from 12 lean and 5 obese non-diabetic subjects with no family history of diabetes. The obese individuals also had a strong family history of obesity. Fibroblasts from all of the subjects exhibited no difference in insulin receptor binding, autophosphorylation, and kinase and hexokinase activity. At variance, basal 2-deoxyglucose (2-DG) uptake and 3H-cytochalasin B binding were 50% increased in cells from individuals with NIDDM (p < 0.001) and/or obesity (p < 0.01) as compared to the lean non-diabetic subjects. Insulin-dependent (maximally stimulated-basal) 2-DG uptake and cytochalasin B binding were decreased three-fold in cells from the diabetic and/or obese subjects (p < 0.01). GLUT1 mRNA and total protein levels were comparable in fibroblasts from all the groups. However, basal GLUT1 cell-surface content was 50% greater in fibroblasts from the NIDDM and/or obese subjects as compared to the lean non-diabetic individuals while insulin-dependent GLUT1 recruitment at the cell surface was diminished three-fold. Increased basal GLUT1 content in the plasma membrane was also observed in skeletal muscle of 4 NIDDM and 3 non-diabetic obese individuals (p < 0.05 vs the lean non diabetic subjects). Basal 2-DG uptake in fibroblasts from diabetic/obese individuals and lean control subjects strongly correlated with the in vivo fasting plasma insulin concentration of the donor. A negative correlation was demonstrated between the magnitude of insulin-dependent glucose uptake by the fibroblasts and plasma insulin levels in vivo. We conclude that a primary abnormality in glucose transport and GLUT1 cell-surface content is present in fibroblasts from NIDDM and obese individuals. The abnormal GLUT1 content is also present in skeletal muscle plasma membranes from NIDDM and obese individuals.
1997
Adult
Aged
Biological Transport
Blood Glucose
Cell Membrane
Cells, Cultured
Deoxyglucose
Diabetes Mellitus
Diabetes Mellitus, Type 2
Female
Fibroblasts
Glucose
Glucose Transporter Type 1
Hexokinase
Humans
Insulin
Kinetics
Male
Microsomes
Middle Aged
Monosaccharide Transport Proteins
Muscle, Skeletal
Obesity
RNA, Messenger
Receptor, Insulin
Reference Values
Regression Analysis
Skin
Thinness
Transcription, Genetic
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/70573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 29
social impact