We previously demonstrated that monosodium glutamate (MSG) consumption increases trimethylamine (TMA) level in the renal tissue as well as dimethylamine and methylamine levels in urine of rats, suggesting the effects of MSG on humans. To better define the findings, we investigated whether MSG consumption alters serum trimethylamine N-oxide (TMAO) level, and as a consequence, induces kidney injury in the rat model. Adult male Wistar rats (n = 40) were randomized to be fed with a standard diet (control group) or a standard diet with 0.5, 1.5 or 3.0 g% MSG corresponding to 7, 21, or 42 g/day in 60 kg man, respectively in drinking water (MSG-treated groups), or a standard diet with 3.0 g% MSG in drinking water which was withdrawn after 4 weeks (MSG-withdrawal group). Blood and urine samples were collected to analyze the TMAO levels using 1H NMR and markers of kidney injury. Fecal samples were also collected for gut microbiota analysis. We found serum TMAO levels increased and urinary TMAO excretion decreased during MSG consumption, in parallel with the increase of the neutrophil gelatinase-associated lipocalin (NGAL) excretion which subsided with the withdrawal of MSG. The fecal 16 S rRNA analysis during MSG consumption showed gut microbiota changes with a consistent suppression of Akkermansia muciniphila, a mucin producing bacteria, but not of TMA-producing bacteria. In conclusions, our findings suggested that prolonged high dose MSG consumption may cause TMAO accumulation in the blood via reduction of renal excretion associated with acute kidney injury. The mechanisms by which MSG reduced TMAO excretion require further investigation.

Monosodium glutamate consumption reduces the renal excretion of trimethylamine N-oxide and the abundance of Akkermansia muciniphila in the gut

Selmi, Carlo;
2022-01-01

Abstract

We previously demonstrated that monosodium glutamate (MSG) consumption increases trimethylamine (TMA) level in the renal tissue as well as dimethylamine and methylamine levels in urine of rats, suggesting the effects of MSG on humans. To better define the findings, we investigated whether MSG consumption alters serum trimethylamine N-oxide (TMAO) level, and as a consequence, induces kidney injury in the rat model. Adult male Wistar rats (n = 40) were randomized to be fed with a standard diet (control group) or a standard diet with 0.5, 1.5 or 3.0 g% MSG corresponding to 7, 21, or 42 g/day in 60 kg man, respectively in drinking water (MSG-treated groups), or a standard diet with 3.0 g% MSG in drinking water which was withdrawn after 4 weeks (MSG-withdrawal group). Blood and urine samples were collected to analyze the TMAO levels using 1H NMR and markers of kidney injury. Fecal samples were also collected for gut microbiota analysis. We found serum TMAO levels increased and urinary TMAO excretion decreased during MSG consumption, in parallel with the increase of the neutrophil gelatinase-associated lipocalin (NGAL) excretion which subsided with the withdrawal of MSG. The fecal 16 S rRNA analysis during MSG consumption showed gut microbiota changes with a consistent suppression of Akkermansia muciniphila, a mucin producing bacteria, but not of TMA-producing bacteria. In conclusions, our findings suggested that prolonged high dose MSG consumption may cause TMAO accumulation in the blood via reduction of renal excretion associated with acute kidney injury. The mechanisms by which MSG reduced TMAO excretion require further investigation.
Akkermansia
Animals
Dimethylamines
Intestines
Lipocalin-2
Male
Methylamines
Mucins
Rats
Rats, Wistar
Renal Elimination
Verrucomicrobia
Drinking Water
Sodium Glutamate
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/70713
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact