Multidrug resistance associated with extended-spectrum beta-lactamase (ESBL) and Klebsiella pneumoniae carbapenemase (KPC) among K. pneumoniae is endemic in southern Europe. We retrospectively analyzed the impact of resistance on the appropriateness of empirical therapy and treatment outcomes of K. pneumoniae bloodstream infections (BSIs) during a 2-year period at a 1420-bed tertiary-care teaching hospital in northern Italy. We identified 217 unique patient BSIs, including 92 (42%) KPCpositive, 49 (23%) ESBL-positive, and 1 (0.5%) metallo-betalactamase-positive isolates. Adequate empirical therapy was administered in 74% of infections caused by non-ESBL non-KPC strains, versus 33% of ESBL and 23% of KPC cases (p<0.0001). To clarify the impact of resistance on BSI treatment outcomes, we compared several different models comprised of non-antibiotic treatment-related factors predictive of patients' 30-day survival status. Acute Physiology and Chronic Health Evaluation (APACHE) II score determined at the time of positive blood culture was superior to other investigated models, correctly predicting survival status in 83% of the study cohort. In multivariate analysis accounting for APACHE II, receipt of inadequate empirical therapy was associated with nearly a twofold higher rate of death (adjusted hazard ratio 1.9, 95% confidence interval 1.1-3.4; p0.02). Multidrug-resistant K. pneumoniae accounted for two-thirds of all K. pneumoniae BSIs, high rates of inappropriate empirical therapy, and twofold higher rates of patient death irrespective of underlying illness
Klebsiella pneumoniae bloodstream infection epidemiology and impact of inappropriate empirical therapy
BARTOLETTI, MICHELE;
2014-01-01
Abstract
Multidrug resistance associated with extended-spectrum beta-lactamase (ESBL) and Klebsiella pneumoniae carbapenemase (KPC) among K. pneumoniae is endemic in southern Europe. We retrospectively analyzed the impact of resistance on the appropriateness of empirical therapy and treatment outcomes of K. pneumoniae bloodstream infections (BSIs) during a 2-year period at a 1420-bed tertiary-care teaching hospital in northern Italy. We identified 217 unique patient BSIs, including 92 (42%) KPCpositive, 49 (23%) ESBL-positive, and 1 (0.5%) metallo-betalactamase-positive isolates. Adequate empirical therapy was administered in 74% of infections caused by non-ESBL non-KPC strains, versus 33% of ESBL and 23% of KPC cases (p<0.0001). To clarify the impact of resistance on BSI treatment outcomes, we compared several different models comprised of non-antibiotic treatment-related factors predictive of patients' 30-day survival status. Acute Physiology and Chronic Health Evaluation (APACHE) II score determined at the time of positive blood culture was superior to other investigated models, correctly predicting survival status in 83% of the study cohort. In multivariate analysis accounting for APACHE II, receipt of inadequate empirical therapy was associated with nearly a twofold higher rate of death (adjusted hazard ratio 1.9, 95% confidence interval 1.1-3.4; p0.02). Multidrug-resistant K. pneumoniae accounted for two-thirds of all K. pneumoniae BSIs, high rates of inappropriate empirical therapy, and twofold higher rates of patient death irrespective of underlying illnessI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.