Background Tissue expansion for breast reconstruction after mastectomy is a safe and effective procedure. A magnetic resonance imaging (MRI) scan can be requested for patients with a breast expander to evaluate concurrent diseases. The electromagnetic field of the MR can interfere with biomedical devices, resulting in potential hazards, compromising the diagnosis, or creation of artifacts. Methods Four tissue expanders with an integrated magnetic valve were tested. The temperature increase was measured using an infrared camera in the MR scanner. The expanders were tested (half-full and full of saline solution) both free in air and immersed in a phantom. The ferromagnetic properties of the devices were assessed using the deflection angle method. To evidence artifacts due to the presence of the expander, MR images were acquired for expanders tested in air and in the phantom. A valve localization test was performed after MRI analysis. Results A slight increase in temperature was demonstrated, without any clinical significance. The deflection angle due to the magnetic field depends on the distance from the bore of the magnet. The angle is higher when the device is closer to the bore. The presence of the magnetic valve influences the MRI signal, creating artifacts on the acquired images, even far from the valve itself. The valve localization test allowed verification of correct valve functioning for all the expanders after the MRI analysis. Conclusions Under selected conditions, MRI scans can be feasible. Heating is not expected to be a major concern, whereas valve displacement could happen in certain clinical conditions. The presence of artifacts is almost unavoidable. Level of evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

Effects of the Magnetic Resonance Field on Breast Tissue Expanders

Catanuto G;
2012-01-01

Abstract

Background Tissue expansion for breast reconstruction after mastectomy is a safe and effective procedure. A magnetic resonance imaging (MRI) scan can be requested for patients with a breast expander to evaluate concurrent diseases. The electromagnetic field of the MR can interfere with biomedical devices, resulting in potential hazards, compromising the diagnosis, or creation of artifacts. Methods Four tissue expanders with an integrated magnetic valve were tested. The temperature increase was measured using an infrared camera in the MR scanner. The expanders were tested (half-full and full of saline solution) both free in air and immersed in a phantom. The ferromagnetic properties of the devices were assessed using the deflection angle method. To evidence artifacts due to the presence of the expander, MR images were acquired for expanders tested in air and in the phantom. A valve localization test was performed after MRI analysis. Results A slight increase in temperature was demonstrated, without any clinical significance. The deflection angle due to the magnetic field depends on the distance from the bore of the magnet. The angle is higher when the device is closer to the bore. The presence of the magnetic valve influences the MRI signal, creating artifacts on the acquired images, even far from the valve itself. The valve localization test allowed verification of correct valve functioning for all the expanders after the MRI analysis. Conclusions Under selected conditions, MRI scans can be feasible. Heating is not expected to be a major concern, whereas valve displacement could happen in certain clinical conditions. The presence of artifacts is almost unavoidable. Level of evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/82179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact