Muscle wasting (sarcopenia) is one of the hallmarks of critical illness. Patients admitted to intensive care unit develop sarcopenia through increased protein catabolism, a decrease in protein syntheses, or both. Among the factors known to promote wasting are chronic inflammation and cytokine imbalance, insulin resistance, hypermetabolism, and malnutrition. Moreover, muscle wasting, known to develop in chronic kidney disease patients, is a harmful consequence of numerous complications associated with deteriorated renal function. Plenty of published data suggest that serum creatinine (SCr) reflects increased kidney damage and is also related to body weight. Based on the concept that urea and creatinine are nitrogenous end products of metabolism, the urea:creatinine ratio (UCR) could be applied but with limited clinical usability in case of kidney damage, hypovolemia, excessive, or protein intake, where UCR can be high and independent of catabolism. Recent data suggest that the sarcopenia index should be considered an alternative to serum creatinine. It is more reliable in estimating muscle mass than SCr. However, the optimal biomarker of catabolism is still an unresolved issue. The SCr is not a promising biomarker for renal function and muscle mass based on the influence of several factors. The present review highlights recent findings on the limits of SCr as a surrogate marker of renal function and the assessment modalities of nutritional status and muscle mass measurements.
The Good, the Bad, and the Serum Creatinine: Exploring the Effect of Muscle Mass and Nutrition
Greco, Massimiliano;
2023-01-01
Abstract
Muscle wasting (sarcopenia) is one of the hallmarks of critical illness. Patients admitted to intensive care unit develop sarcopenia through increased protein catabolism, a decrease in protein syntheses, or both. Among the factors known to promote wasting are chronic inflammation and cytokine imbalance, insulin resistance, hypermetabolism, and malnutrition. Moreover, muscle wasting, known to develop in chronic kidney disease patients, is a harmful consequence of numerous complications associated with deteriorated renal function. Plenty of published data suggest that serum creatinine (SCr) reflects increased kidney damage and is also related to body weight. Based on the concept that urea and creatinine are nitrogenous end products of metabolism, the urea:creatinine ratio (UCR) could be applied but with limited clinical usability in case of kidney damage, hypovolemia, excessive, or protein intake, where UCR can be high and independent of catabolism. Recent data suggest that the sarcopenia index should be considered an alternative to serum creatinine. It is more reliable in estimating muscle mass than SCr. However, the optimal biomarker of catabolism is still an unresolved issue. The SCr is not a promising biomarker for renal function and muscle mass based on the influence of several factors. The present review highlights recent findings on the limits of SCr as a surrogate marker of renal function and the assessment modalities of nutritional status and muscle mass measurements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.