: Autosomal-Dominant Polycystic Kidney Disease (ADPKD) is a monogenic disorder initiated by mutations in either PKD1 or PKD2 genes, responsible for encoding polycystin 1 and polycystin 2, respectively. These proteins are primarily located within the primary cilia. The disease follows an inexorable progression, leading most patients to severe renal failure around the age of 50, and extra-renal complications are frequent. A cure for ADPKD remains elusive, but some measures can be employed to manage symptoms and slow cyst growth. Tolvaptan, a vasopressin V2 receptor antagonist, is the only drug that has been proven to attenuate ADPKD progression. Recently, autophagy, a cellular recycling system that facilitates the breakdown and reuse of aged or damaged cellular components, has emerged as a potential contributor to the pathogenesis of ADPKD. However, the precise role of autophagy in ADPKD remains a subject of investigation, displaying a potentially twofold impact. On the one hand, impaired autophagy may promote cyst formation by inducing apoptosis, while on the other hand, excessive autophagy may lead to fibrosis through epithelial to mesenchymal transition. Promising results of autophagy inducers have been observed in preclinical studies. Clinical trials are warranted to thoroughly assess the long-term safety and efficacy of a combination of autophagy inducers with metabolic and/or aquaferetic drugs. This research aims to shed light on the complex involvement of autophagy in ADPKD, explore the regulation of autophagy in disease progression, and highlight the potential of combination therapies as a promising avenue for future investigations.

Autosomal Dominant Polycystic Kidney Disease: Is There a Role for Autophagy?

Moroni, Gabriella;Reggiani, Francesco
2023-01-01

Abstract

: Autosomal-Dominant Polycystic Kidney Disease (ADPKD) is a monogenic disorder initiated by mutations in either PKD1 or PKD2 genes, responsible for encoding polycystin 1 and polycystin 2, respectively. These proteins are primarily located within the primary cilia. The disease follows an inexorable progression, leading most patients to severe renal failure around the age of 50, and extra-renal complications are frequent. A cure for ADPKD remains elusive, but some measures can be employed to manage symptoms and slow cyst growth. Tolvaptan, a vasopressin V2 receptor antagonist, is the only drug that has been proven to attenuate ADPKD progression. Recently, autophagy, a cellular recycling system that facilitates the breakdown and reuse of aged or damaged cellular components, has emerged as a potential contributor to the pathogenesis of ADPKD. However, the precise role of autophagy in ADPKD remains a subject of investigation, displaying a potentially twofold impact. On the one hand, impaired autophagy may promote cyst formation by inducing apoptosis, while on the other hand, excessive autophagy may lead to fibrosis through epithelial to mesenchymal transition. Promising results of autophagy inducers have been observed in preclinical studies. Clinical trials are warranted to thoroughly assess the long-term safety and efficacy of a combination of autophagy inducers with metabolic and/or aquaferetic drugs. This research aims to shed light on the complex involvement of autophagy in ADPKD, explore the regulation of autophagy in disease progression, and highlight the potential of combination therapies as a promising avenue for future investigations.
2023
autophagy
autosomal dominant polycystic kidney disease
kidney diseases
polycystins
renal involvement
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/88524
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact