Purpose: This study aims to describe and assess the current stage of the artificial intelligence (AI) technology integration in preventive orthopaedics of the knee and hip joints. Materials and methods: The study was conducted in strict compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. Literature databases were searched for articles describing the development and validation of AI models aimed at diagnosing knee or hip joint pathologies or predicting their development or course in patients. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and QUADAS-AI tools. Results: 56 articles were found that meet all the inclusion criteria. We identified two problems that block the full integration of AI into the routine of an orthopaedic physician. The first of them is related to the insufficient amount, variety and quality of data for training, and validation and testing of AI models. The second problem is the rarity of rational evaluation of models, which is why their real quality cannot always be evaluated. Conclusion: The vastness and relevance of the studied topic are beyond doubt. Qualitative and optimally validated models exist in all four scopes considered. Additional optimization and confirmation of the models' quality on various datasets are the last technical stumbling blocks for creating usable software and integrating them into the routine of an orthopaedic physician.

Systematic review of artificial intelligence tack in preventive orthopaedics: is the land coming soon?

Kon, Elizaveta;
2023-01-01

Abstract

Purpose: This study aims to describe and assess the current stage of the artificial intelligence (AI) technology integration in preventive orthopaedics of the knee and hip joints. Materials and methods: The study was conducted in strict compliance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. Literature databases were searched for articles describing the development and validation of AI models aimed at diagnosing knee or hip joint pathologies or predicting their development or course in patients. The quality of the included articles was assessed using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and QUADAS-AI tools. Results: 56 articles were found that meet all the inclusion criteria. We identified two problems that block the full integration of AI into the routine of an orthopaedic physician. The first of them is related to the insufficient amount, variety and quality of data for training, and validation and testing of AI models. The second problem is the rarity of rational evaluation of models, which is why their real quality cannot always be evaluated. Conclusion: The vastness and relevance of the studied topic are beyond doubt. Qualitative and optimally validated models exist in all four scopes considered. Additional optimization and confirmation of the models' quality on various datasets are the last technical stumbling blocks for creating usable software and integrating them into the routine of an orthopaedic physician.
2023
Artificial intelligence
Hip joint
Knee joint
Lower limb
MRI
Osteoarthritis
X-rays
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/89605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact