Purpose: The aim of this study was to introduce an optimized version of the Corvis Biomechanical Index for Chinese populations (cCBI). Design: Retrospective, multicenter clinical validity enhancement study. Methods: Patients were included from 7 clinics in Beijing, Shenyang, Guangzhou, Shanghai, Wenzhou, Chongqing, and Tianjin, China. Logistic regression was used to optimize the values of the constants of the CBI, based on database 1 as the development dataset (6 of 7 clinics), to create a new version of the index named cCBI. The factors of the CBI (A1Velocity, ARTh, Stiffness Parameter-A, DARatio2mm, and Inverse Integrated Radius) and the cutoff value were kept the same (0.5). With the formation of cCBI determined, it was validated on database 2 (1 of the 7 clinics). Results: Two thousand four hundred seventy-three patients (healthy and keratoconus) were included. In database 2, the area under the curve of the cCBI was 0.985 with 93.4% specificity and 95.5% sensitivity. In the same dataset, the original CBI produced an area under the curve of 0.978 with 68.1% specificity and 97.7% sensitivity. There was a statistically significant difference between the receiver operating characteristic curve of cCBI and CBI (De Long P = .0009) CONCLUSION: The new cCBI for Chinese patients was shown to be statistically significantly better when compared with CBI to separate healthy from keratoconic eyes. The presence of an external validation dataset confirms this finding and suggests the use of cCBI in everyday clinical practice to aid in the diagnosis of keratoconus in patients who are of Chinese ethnicity.
Detection of Keratoconus With a New Corvis Biomechanical Index Optimized for Chinese Populations
Vinciguerra, Paolo
2023-01-01
Abstract
Purpose: The aim of this study was to introduce an optimized version of the Corvis Biomechanical Index for Chinese populations (cCBI). Design: Retrospective, multicenter clinical validity enhancement study. Methods: Patients were included from 7 clinics in Beijing, Shenyang, Guangzhou, Shanghai, Wenzhou, Chongqing, and Tianjin, China. Logistic regression was used to optimize the values of the constants of the CBI, based on database 1 as the development dataset (6 of 7 clinics), to create a new version of the index named cCBI. The factors of the CBI (A1Velocity, ARTh, Stiffness Parameter-A, DARatio2mm, and Inverse Integrated Radius) and the cutoff value were kept the same (0.5). With the formation of cCBI determined, it was validated on database 2 (1 of the 7 clinics). Results: Two thousand four hundred seventy-three patients (healthy and keratoconus) were included. In database 2, the area under the curve of the cCBI was 0.985 with 93.4% specificity and 95.5% sensitivity. In the same dataset, the original CBI produced an area under the curve of 0.978 with 68.1% specificity and 97.7% sensitivity. There was a statistically significant difference between the receiver operating characteristic curve of cCBI and CBI (De Long P = .0009) CONCLUSION: The new cCBI for Chinese patients was shown to be statistically significantly better when compared with CBI to separate healthy from keratoconic eyes. The presence of an external validation dataset confirms this finding and suggests the use of cCBI in everyday clinical practice to aid in the diagnosis of keratoconus in patients who are of Chinese ethnicity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.