Purpose: The spatial variability and clinical relevance of the tumour immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). Here we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers, and microscopically evaluate the distribution of immune infiltration. Experimental design: Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterise the TIME on immunohistochemistry (IHC)-stained slides, we designed a multi-stage DL algorithm, IHC-TIME, to automatically detect immune cells and their localisation in TIME in tumour-stromal, centre-border segments. Results: Two models were trained to detect and localise the immune cells on IHC-stained slides. The framework models, i.e. immune cell detection models and tumour-stroma segmentation, reached 98% and 91% accuracy, respectively. Patients with inflamed tumours showed better recurrence-free survival than those with immune-excluded or immune desert tumours. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumour. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. Conclusions: Our DL-based tool can accurately analyse and quantify immune cells on IHC-stained slides of HCC. The microscopical classification of the TIME can stratify HCCs according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.

Hepatocellular Carcinoma Immune Microenvironment Analysis: A Comprehensive Assessment with Computational and Classical Pathology

Renne, SL;Di Tommaso, L;Ng, Charlotte;Piscuoglio, S;Terracciano, LM
2024-01-01

Abstract

Purpose: The spatial variability and clinical relevance of the tumour immune microenvironment (TIME) are still poorly understood for hepatocellular carcinoma (HCC). Here we aim to develop a deep learning (DL)-based image analysis model for the spatial analysis of immune cell biomarkers, and microscopically evaluate the distribution of immune infiltration. Experimental design: Ninety-two HCC surgical liver resections and 51 matched needle biopsies were histologically classified according to their immunophenotypes: inflamed, immune-excluded, and immune-desert. To characterise the TIME on immunohistochemistry (IHC)-stained slides, we designed a multi-stage DL algorithm, IHC-TIME, to automatically detect immune cells and their localisation in TIME in tumour-stromal, centre-border segments. Results: Two models were trained to detect and localise the immune cells on IHC-stained slides. The framework models, i.e. immune cell detection models and tumour-stroma segmentation, reached 98% and 91% accuracy, respectively. Patients with inflamed tumours showed better recurrence-free survival than those with immune-excluded or immune desert tumours. Needle biopsies were found to be 75% accurate in representing the immunophenotypes of the main tumour. Finally, we developed an algorithm that defines immunophenotypes automatically based on the IHC-TIME analysis, achieving an accuracy of 80%. Conclusions: Our DL-based tool can accurately analyse and quantify immune cells on IHC-stained slides of HCC. The microscopical classification of the TIME can stratify HCCs according to the patient prognosis. Needle biopsies can provide valuable insights for TIME-related prognostic prediction, albeit with specific constraints. The computational pathology tool provides a new way to study the HCC TIME.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/92163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact