Despite advances in care, cardiovascular diseases remain the leading cause of death worldwide. As a result, identifying suitable biomarkers for early diagnosis and improving therapeutic and diagnostic strategies is crucial. Because of their significant advantages over other therapeutic approaches, nucleic-based therapies, particularly aptamers, are gaining increased attention. Aptamers are innovative synthetic polymers or oligomers of single-stranded DNA (ssDNA) or RNA molecules that can form 3 -dimensional structures and thus interact with their targets with high specificity and affinity. Furthermore, they outperform classical protein-based antibodies in terms of in vitro selection, production, ease of modification and conjugation, high stability, low immunogenicity, and suitability for nanoparticle functionalization for targeted drug delivery. This work aims to review the advances made in the aptamers' field in biomarker detection, diagnosis, imaging, and targeted therapy, which highlight their huge potential in the management of cardiovascular diseases. (J Am Coll Cardiol Basic Trans Science 2024;9:260-277) (c) 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Diagnostic and Therapeutic Aptamers: A Promising Pathway to Improved Cardiovascular Disease Management
Lauta, Francesca Cecilia;Modica, Jessica;
2024-01-01
Abstract
Despite advances in care, cardiovascular diseases remain the leading cause of death worldwide. As a result, identifying suitable biomarkers for early diagnosis and improving therapeutic and diagnostic strategies is crucial. Because of their significant advantages over other therapeutic approaches, nucleic-based therapies, particularly aptamers, are gaining increased attention. Aptamers are innovative synthetic polymers or oligomers of single-stranded DNA (ssDNA) or RNA molecules that can form 3 -dimensional structures and thus interact with their targets with high specificity and affinity. Furthermore, they outperform classical protein-based antibodies in terms of in vitro selection, production, ease of modification and conjugation, high stability, low immunogenicity, and suitability for nanoparticle functionalization for targeted drug delivery. This work aims to review the advances made in the aptamers' field in biomarker detection, diagnosis, imaging, and targeted therapy, which highlight their huge potential in the management of cardiovascular diseases. (J Am Coll Cardiol Basic Trans Science 2024;9:260-277) (c) 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.