The lung is a barrier tissue with constant exposure to the inhaled environment. Therefore, innate immunity against particulates and pathogens is of critical importance to maintain tissue homeostasis. Although the lung harbors both myelinating and nonmyelinating Schwann cells (NMSCs), NMSCs represent the most abundant Schwann cell (SC) population in the lung. However, their contribution to lung physiology remains largely unknown. In this study, we used the human glial fibrillary acidic protein promoter driving tdTomato expression in mice to identify SCs in the peripheral nervous system and determine their location within the lung. Single-cell transcriptomic analysis revealed the existence of two NMSC populations (NMSC1 and NMSC2) that may participate in pathogen recognition. We demonstrated that these pulmonary SCs produce chemokines and cytokines upon LPS stimulation using in vitro conditions. Furthermore, we challenged mouse lungs with LPS and found that NMSC1 exhibits an enriched proinflammatory response among all SC subtypes. Collectively, these findings define the molecular profiles of lung SCs and suggest a potential role for NMSCs in lung inflammation.

Single-Cell Transcriptomic Analysis Links Nonmyelinating Schwann Cells to Proinflammatory Response in the Lung

Mozzarelli, Alessandro;
2023-01-01

Abstract

The lung is a barrier tissue with constant exposure to the inhaled environment. Therefore, innate immunity against particulates and pathogens is of critical importance to maintain tissue homeostasis. Although the lung harbors both myelinating and nonmyelinating Schwann cells (NMSCs), NMSCs represent the most abundant Schwann cell (SC) population in the lung. However, their contribution to lung physiology remains largely unknown. In this study, we used the human glial fibrillary acidic protein promoter driving tdTomato expression in mice to identify SCs in the peripheral nervous system and determine their location within the lung. Single-cell transcriptomic analysis revealed the existence of two NMSC populations (NMSC1 and NMSC2) that may participate in pathogen recognition. We demonstrated that these pulmonary SCs produce chemokines and cytokines upon LPS stimulation using in vitro conditions. Furthermore, we challenged mouse lungs with LPS and found that NMSC1 exhibits an enriched proinflammatory response among all SC subtypes. Collectively, these findings define the molecular profiles of lung SCs and suggest a potential role for NMSCs in lung inflammation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/93810
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact