Lymphocyte recruitment is a key pathogenic event in inflammatory bowel disease (IBD). Adhesion of T cells to human intestinal microvascular endothelial cells (HIMEC) is mediated by ICAM-1, VCAM-1 and fractalkine (FKN), but the signaling molecules that orchestrate this process have yet to be identified. Because MAPK play an important role in the response of many cell types to pro-inflammatory stimuli, we assessed the functional role of p38 MAPK, p42/44 MAPK and JNK in the regulation of lymphocyte adhesion to and chemotaxis across the microvasculature in IBD. We found that the MAPK were phosphorylated in the bowel microvasculature and human intestinal fibroblasts of patients with IBD but not of healthy individuals. Stimulation of HIMEC with TNF-alpha triggered phosphorylation of the MAPK, and up-regulation of VCAM-1, FKN and ICAM-1. Blockade of p38 decreased the expression of all MAPK by 50% (p<0.01), whereas inhibition of p42/44 decreased the expression of ICAM-1 and FKN by 50% (p<0.01). Treatment of human intestinal fibroblasts with TNF-alpha elicited production of IL-8 and MCP-1, which was reduced (p<0.05) by blockade of p38 and p42/44. Finally, blockade of p38 and p42/44 reduced lymphocyte adhesion to (p<0.05) and transmigration across (p<0.05) HIMEC monolayers. These findings suggest a critical role for MAPK in governing lymphocyte influx into the gut in IBD patients, and their blockade may offer a molecular target for blockade of leukocyte recruitment to the intestine.

The role of MAPK in governing lymphocyte adhesion to and migration across the microvasculature in inflammatory bowel disease

S. Vetrano;A. Repici;A. Malesci;S. Danese
2009-01-01

Abstract

Lymphocyte recruitment is a key pathogenic event in inflammatory bowel disease (IBD). Adhesion of T cells to human intestinal microvascular endothelial cells (HIMEC) is mediated by ICAM-1, VCAM-1 and fractalkine (FKN), but the signaling molecules that orchestrate this process have yet to be identified. Because MAPK play an important role in the response of many cell types to pro-inflammatory stimuli, we assessed the functional role of p38 MAPK, p42/44 MAPK and JNK in the regulation of lymphocyte adhesion to and chemotaxis across the microvasculature in IBD. We found that the MAPK were phosphorylated in the bowel microvasculature and human intestinal fibroblasts of patients with IBD but not of healthy individuals. Stimulation of HIMEC with TNF-alpha triggered phosphorylation of the MAPK, and up-regulation of VCAM-1, FKN and ICAM-1. Blockade of p38 decreased the expression of all MAPK by 50% (p<0.01), whereas inhibition of p42/44 decreased the expression of ICAM-1 and FKN by 50% (p<0.01). Treatment of human intestinal fibroblasts with TNF-alpha elicited production of IL-8 and MCP-1, which was reduced (p<0.05) by blockade of p38 and p42/44. Finally, blockade of p38 and p42/44 reduced lymphocyte adhesion to (p<0.05) and transmigration across (p<0.05) HIMEC monolayers. These findings suggest a critical role for MAPK in governing lymphocyte influx into the gut in IBD patients, and their blockade may offer a molecular target for blockade of leukocyte recruitment to the intestine.
2009
Endothelium; Inflammation; Inflammatory bowel disease; Protein kinases
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/9610
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 55
social impact