Imaging has steadily evolved in clinical cancer research as a result of improved conventional imaging methods and the innovation of new functional and molecular imaging techniques. Despite this evolution, the design and data quality derived from imaging within clinical trials are not ideal and gaps exist with paucity of optimised methods, constraints of trial operational support, and scarce resources. Difficulties associated with integrating imaging biomarkers into trials have been neglected compared with inclusion of tissue and blood biomarkers, largely because of inherent challenges in the complexity of imaging technologies, safety issues related to new imaging contrast media, standardisation of image acquisition across multivendor platforms, and various postprocessing options available with advanced software. Ignorance of these pitfalls directly affects the quality of the imaging read-out, leading to trial failure, particularly when imaging is a primary endpoint. Therefore, we propose a practical risk-based framework and recommendations for trials driven by imaging biomarkers, which allow identification of risks at trial initiation to better allocate resources and prioritise key tasks.
A risk management approach for imaging biomarker-driven clinical trials in oncology
Chiti A
2015-01-01
Abstract
Imaging has steadily evolved in clinical cancer research as a result of improved conventional imaging methods and the innovation of new functional and molecular imaging techniques. Despite this evolution, the design and data quality derived from imaging within clinical trials are not ideal and gaps exist with paucity of optimised methods, constraints of trial operational support, and scarce resources. Difficulties associated with integrating imaging biomarkers into trials have been neglected compared with inclusion of tissue and blood biomarkers, largely because of inherent challenges in the complexity of imaging technologies, safety issues related to new imaging contrast media, standardisation of image acquisition across multivendor platforms, and various postprocessing options available with advanced software. Ignorance of these pitfalls directly affects the quality of the imaging read-out, leading to trial failure, particularly when imaging is a primary endpoint. Therefore, we propose a practical risk-based framework and recommendations for trials driven by imaging biomarkers, which allow identification of risks at trial initiation to better allocate resources and prioritise key tasks.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.