Purpose Intrahepatic cholangiocarcinoma (IHC) is an aggressive disease with few reliable preoperative biomarkers. This study aims to elucidate if radiomics extracted from preoperative [18F]FDG PET/CT may grant a non-invasive biological characterization of IHC and predict outcome after complete resection of the tumor.Methods All patients preoperatively imaged by [18F]FDG PET/CT who underwent hepatectomy for mass-forming IHC in the period 2010-2019 were retrospectively evaluated. On PET images, manual slice-by-slice segmentation of IHC was performed (Tumor-VOI). A 5-mm margin region was semi-automatically generated around the tumor (Margin-VOI). Textural analysis was performed using the LifeX software. Analyzed outcomes included tumor grading (G3 vs. G1-2), microvascular invasion (MVI), overall survival (OS), and progression-free survival (PFS). The performances of the combined clinical-radiomic models were compared with those of standard clinical models.Results Overall, 74 patients (40 females, median age 68 years) were included. Considering tumor grading and MVI, the models combining the clinical data and radiomics of the Tumor-VOI had better performances than the clinical ones (AUC = 0.78 vs. 0.72 for grading; 0.87 vs. 0.78 for MVI). The inclusion into the models of radiomics of the Margin-VOI further improved the prediction of grading (AUC = 0.83), but not of MVI. Considering OS and PFS, the models including the preoperative clinical data and radiomics of the Tumor-VOI and Margin-VOI had better performances than the pure clinical ones (C-index = 0.81 vs. 0.76 for OS; 0.81 vs. 0.72 for PFS) and similar to the models including the pathology and postoperative data (C-index = 0.81 for OS; 0.79 for PFS). No model retained the standard SUV measures.Conclusion The PET-based radiomics of IHC can predict pathology data and allow a reliable preoperative evaluation of prognosis. The radiomics of both the tumoral and peritumoral areas had clinical relevance. The combined clinical-radiomic models outperformed the pure preoperative clinical ones and achieved performances non-inferior to the postoperative models.

PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival

Sollini, Martina;Chiti, Arturo;
2022-01-01

Abstract

Purpose Intrahepatic cholangiocarcinoma (IHC) is an aggressive disease with few reliable preoperative biomarkers. This study aims to elucidate if radiomics extracted from preoperative [18F]FDG PET/CT may grant a non-invasive biological characterization of IHC and predict outcome after complete resection of the tumor.Methods All patients preoperatively imaged by [18F]FDG PET/CT who underwent hepatectomy for mass-forming IHC in the period 2010-2019 were retrospectively evaluated. On PET images, manual slice-by-slice segmentation of IHC was performed (Tumor-VOI). A 5-mm margin region was semi-automatically generated around the tumor (Margin-VOI). Textural analysis was performed using the LifeX software. Analyzed outcomes included tumor grading (G3 vs. G1-2), microvascular invasion (MVI), overall survival (OS), and progression-free survival (PFS). The performances of the combined clinical-radiomic models were compared with those of standard clinical models.Results Overall, 74 patients (40 females, median age 68 years) were included. Considering tumor grading and MVI, the models combining the clinical data and radiomics of the Tumor-VOI had better performances than the clinical ones (AUC = 0.78 vs. 0.72 for grading; 0.87 vs. 0.78 for MVI). The inclusion into the models of radiomics of the Margin-VOI further improved the prediction of grading (AUC = 0.83), but not of MVI. Considering OS and PFS, the models including the preoperative clinical data and radiomics of the Tumor-VOI and Margin-VOI had better performances than the pure clinical ones (C-index = 0.81 vs. 0.76 for OS; 0.81 vs. 0.72 for PFS) and similar to the models including the pathology and postoperative data (C-index = 0.81 for OS; 0.79 for PFS). No model retained the standard SUV measures.Conclusion The PET-based radiomics of IHC can predict pathology data and allow a reliable preoperative evaluation of prognosis. The radiomics of both the tumoral and peritumoral areas had clinical relevance. The combined clinical-radiomic models outperformed the pure preoperative clinical ones and achieved performances non-inferior to the postoperative models.
2022
Biomarkers
Intrahepatic cholangiocarcinoma
Prognosis
Radiomics
Texture analysis
[18F]FDG PET/CT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11699/66723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact